Kong Mun Lo, See Mun Lee, Nordiyana Binti Zaldi, Rusnah Syahila Duali Hussen and Edward R.T. Tiekink*

Crystal structure of *catena*-{di-*aqua*-sodium [*n*-butyl(methyl)carbamothioyl]sulfanide}_n, [C₆H₁₆NNaO₂S₂]_n

https://doi.org/10.1515/ncrs-2019-0514 Received July 19, 2019; accepted August 21, 2019; available online September 17, 2019

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia Nordiyana Binti Zaldi and Rusnah Syahila Duali Hussen: Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

ට Open Access. © 2019 Kong Mun Lo et al., published by De Gruyter. (ලා By License.

Abstract

[C₆H₁₆NNaO₂S₂]_n, monoclinic, P_{21}/c (no. 14), a = 16.3469(2) Å, b = 5.7512(1) Å, c = 11.8647(1) Å, $\beta = 91.046(1)^{\circ}$, V = 1115.27(3) Å³, Z = 4, $R_{gt}(F) = 0.0212$, $wR_{ref}(F^2) = 0.0562$, T = 100(2) K.

CCDC no.: 1948410

The constituents of the asymmetric unit are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.12 \times 0.07 \times 0.04 \text{ mm}$
Wavelength:	Cu Kα radiation (1.54178 Å)
μ:	4.45 mm ^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
$ heta_{\max}$, completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	13832, 1984, 0.035
Criterion for I _{obs} , N(hkl)gt:	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 1843
N(param) _{refined} :	143
Programs:	CrysAlis ^{pRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

All chemicals and solvents were used as purchased without purification. The melting point was determined using a Meltemp II digital melting point apparatus and was uncorrected. The IR spectrum was obtained using a Perkin-Elmer RX1 spectrophotometer in a Nujol mull between KBr plates from 4000 to 400 cm⁻¹. The ¹H and ¹³C{¹H} NMR spectra were recorded at room temperature in DMSO-d₆ solution on a Bruker AVN FT-NMR spectrometer with chemical shifts relative to tetramethylsilane.

The dithiocarbamate ligand was prepared in situ (acetone) from the reaction of CS_2 (Merck, 0.25 mmol) with *N*butylmethylamine (Merck, 0.25 mmol) and NaOH (0.02 mL; 50% w/v); CS_2 was added dropwise into the methanol solution

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

1334 — Lo et al.: [C₆H₁₆NNaO₂S₂]_n

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
S1	0.59781(2)	0.52552(5)	0.76260(2)	0.01336(10)
S2	0.73416(2)	0.72896(6)	0.90450(3)	0.01792(10)
N1	0.75278(7)	0.3872(2)	0.75606(9)	0.0178(2)
C1	0.70073(8)	0.5354(2)	0.80349(10)	0.0139(3)
C2	0.72612(9)	0.2217(3)	0.66871(12)	0.0233(3)
H2A	0.6870	0.1118	0.7006	0.035*
H2B	0.7736	0.1364	0.6411	0.035*
H2C	0.6999	0.3062	0.6061	0.035*
C3ª	0.83995(8)	0.3713(3)	0.78991(12)	0.0225(3)
H3A ^a	0.8530	0.2092	0.8119	0.027*
H3B ^a	0.8504	0.4721	0.8562	0.027*
C4 ^a	0.89498(14)	0.4450(6)	0.6948(2)	0.0233(7)
H4A ^a	0.8812	0.3534	0.6264	0.028*
H4B ^a	0.9527	0.4119	0.7161	0.028*
C5 ^a	0.88555(14)	0.7022(4)	0.6689(2)	0.0249(7)
H5A ^a	0.9021	0.7957	0.7355	0.030*
H5B ^a	0.8277	0.7380	0.6498	0.030*
C6 ^a	0.94223(11)	0.7645(4)	0.56471(16)	0.0443(5)
H6A ^a	0.9993	0.7273	0.5840	0.066*
H6B ^a	0.9375	0.9308	0.5477	0.066*
H6C ^a	0.9247	0.6738	0.4987	0.066*
C3′ ^b	0.83995(8)	0.3713(3)	0.78991(12)	0.0225(3)
H3′1 ^b	0.8617	0.2181	0.7670	0.027*
H3′2 ^b	0.8450	0.3826	0.8730	0.027*
C4′ ^b	0.8937(2)	0.5748(10)	0.7333(4)	0.0207(11)
H4′1 ^b	0.8702	0.7280	0.7527	0.025*
H4′2 ^b	0.9503	0.5686	0.7641	0.025*
C5′ ^b	0.8950(2)	0.5485(7)	0.6061(3)	0.0231(12)
H5′1 ^b	0.8388	0.5457	0.5739	0.028*
H5′2 [♭]	0.9235	0.4035	0.5846	0.028*
C6′ ^b	0.94223(11)	0.7645(4)	0.56471(16)	0.0443(5)
H6′1 ^b	0.9210	0.9041	0.6015	0.066*
H6′2 ^b	0.9351	0.7794	0.4828	0.066*
H6′3 [♭]	1.0005	0.7471	0.5836	0.066*
Na	0.51573(3)	0.25752(8)	0.58118(4)	0.01467(13)
01W	0.57908(6)	0.42617(16)	0.42368(7)	0.0164(2)
H1W	0.6222(7)	0.505(2)	0.4176(13)	0.025*
H2W	0.5809(9)	0.318(2)	0.3755(12)	0.025*
02W	0.57935(5)	-0.10146(16)	0.55969(7)	0.0157(2)
H3W	0.6227(7)	-0.116(3)	0.5240(11)	0.024*
H4W	0.5840(9)	-0.191(3)	0.6157(10)	0.024*

^aOccupancy: 0.631(5), ^bOccupancy: 0.369(5).

(10 mL). The resulting mixture solution was kept at 273 K for 1 h. The filtrate was evaporated until a beige precipitate was obtained. The precipitate was recrystallized from acetone-methanol by slow evaporation to yield colourless crystals. Yield: 0.029 g (52.4%). **M.pt:** 333 – 334 K. **IR** (cm⁻¹) 1478 (s) v(C–N), 1012 (s) v(C–S), 955 (m) v(C–S). ¹H **NMR** (DMSO-d₆, ppm): δ 0.90 (s, 3H, CH₃), 1.20–1.49 (m, 4H, CH₂CH₂), 3.15–3.21 (m, 4H, water-OH), 3.25 (s, 3H, NCH₃), 3.90–4.00 (m, 2H,

NCH₂). ¹³C{¹H} NMR (DMSO-d₆, ppm): δ 13.9 (CH₃), 20.1, 29.0 (CH₂CH₂), 42.6 (NCH₃), 57.1 (NCH₂), 199.5 (CS₂).

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.98–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O-bound H-atoms were located in a difference Fourier map but were refined with a distance restraint $O-H = 0.84 \pm 0.01$ Å, and with $U_{iso}(H)$ set to $1.5U_{equiv}(O)$. The C4 and C5 atoms of the *n*-butyl chain were found to be disordered over two positions. Refinement (independent anisotropic displacement parameters for all atoms) showed the major component has a site occupancy factor = 0.631(5).

Comment

The title sodium salt of n-Bu(Me)NCS₂⁻, isolated as a di-hydrate, was determined as part of on-going systematic studies of dithiocarbamates, e.g. ester [5], salt [6] and zinc-triad compounds [7, 8]. The pivotal motivation for such systematic studies of dithiocarbamate-containing species is the quest to discover new structural motifs as realised in two recent studies, whereby novel one-dimensional coordination polymers with distinctive topologies have been revealed for cadmium dithiocabamate derivatives, namely linear {Cd[S₂CN(CH₂CH₂)₂O]₂}_n [9] and twisted {Cd[S₂CN(iPr)CH₂CH₂OH]₂]_n [10].

The asymmetric unit of the title salt hydrate is shown in the upper view of the figure (70% displacement ellipsoids; both images show only the major component of the disordered -CH2CH2- residue) and comprises a sodium cation, a *n*-Bu(Me)NCS₂⁻ anion and two water molecules of crystallisation. The NCS₂ chromophore is strictly planar (r.m.s. deviation = 0.0035 Å) with the Na [0.2527(9) Å], C2 [0.019(2) Å] and C3 [-0.083(2) Å] atoms lying to either side of the plane. There is a discrepancy in the C–S1, S2 bond lengths [C1-S1=1.7434(13) Å and C1-S2=1.7178(13) Å] consistentwith some localisation of π -electron in the C1–S2 bond. The relative short C1–N1 bond length of 1.3357(17) Å is consistent with a significant contribution of the n-Bu(Me)N⁺= CS_2^{2-} canonical form to the overall electronic structure of the dithiocarbamate anion. The distinctive nature of the C-S bonds is reflected in the pattern of bond angles subtended at the quaternary-C1 atom. Thus, the angles involving the S2 atom are systematically wider than the angle not involving this atom [S1-C1-S2=120.55(7)°, S2-C1-N1 = 120.69(10)° and S1-C1-N1 = 118.75(10)°]. This contrasts the observation of a recently reported dithiocarbamate salt with an ammonium counter-cation wherein the angles subtended at the quaternary-C1 atom were in the narrow range 119.45(8) to 120.57(10)° [6]. The sodium cation is coordinated

by four water molecules as each of the independent water molecules is bidentate bridging [range of Na-O(water): bond lengths: Na-O2w = 2.3278(10) Å to Na $-O2w^{1} = 2.4331(10)$ Å for symmetry operation (i) 1 - x, -y, 1 - z]. The distorted octahedral cis-O₄S₂ geometry is completed by two S1 atoms [Na-S1 = 2.9502(6) Å and Na-S1 = 2.9641(6) Å for (ii) 1 - x,-1/2 + y, 3/2 - z]. The participation of the S1 atom in two interactions with the sodium cation accounts for the relative lengthening of the C1-S1 bond with respect to the C1-S2 bond (see above). As seen in the lower view of the figure, a twodimensional layer results from zig-zag chains of edge-shared octahedra linked to neighbouring rows via corner-shared octahedra. The layer assembles in the *bc*-plane and has a planar topology. Within this framework, water-O-H···S hydrogen bonds, involving both sulphur atoms, provide additional stability $[01w-H1w\cdots S2^{iii}: H1w\cdots S2^{iii} = 2.393(11) \text{ Å},$ $01w \cdots S2^{iii} = 3.2301(10)$ Å with angle at $H1w = 172.8(10)^{\circ}$; $O1w - H2w \cdots S1^{iv}$: $H2w \cdots S1^{iv} = 2.406(12)$ Å, $O1w \cdots S1^{iv} =$ 3.2428(9) Å with angle at H1w = $170.5(12)^{\circ}$; O2w-H3w···S2^{iv}: H3w···S2^{iv} = 2.418(13) Å, O2w···S2^{iv} = 3.2407(9) Å with angle at $H1w = 168.0(15)^{\circ}$; $O2w - H4w \cdots S1^{v}$: $H4w \cdots S1^{v} =$ 2.394(15) Å, $O2w \cdots S1^{v} = 3.2346(9)$ Å with angle at $H1w = 174.7(14)^{\circ}$ for (iii) x, 3/2 - y, -1/2 + z, (iv) x, 1/2 - y, -1/2 + z and (v) x, -1 + y, z]. The layers stack along the *c*-axis direction being separated by hydrophobic interactions, much in the same way as reported recently in the structure of $Na_2[O_2CCH_2SC(=S)N(Me)n-Bu]_2 \cdot 3H_2O[11].$

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- 4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. **45** (2012) 849–854.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of *N*methyl-*N*-phenyl(methylsulfanyl) carbothioamide, C₉H₁₁NS₂.
 Z. Kristallogr. NCS 234 (2019) nrcs-2019-0511.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of 4-phenylpiperazin-1-ium (4-phenylpiperazin-1-yl) carbothioylsulfanide, [C₁₀H₁₅N₂][C₁₁H₁₃N₂S₂]. Z. Kristallogr. NCS 234 (2019) nrcs-2019-0512.
- 7. Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals **8** (2018) 292.
- Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) 18.
- Ahmad, J.; How, F. N.-F.; Halim, S. N. A.; Jotani, M. M.; Lee, S. M.; Tiekink, E. R. T.: A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z. Kristallogr. – Cryst. Mater. 234 (2019) 341–349.
- Tan, Y. S.; Halim, S. N. A.; Tiekink, E. R. T.: Exploring the crystallization landscape of cadmium bis(*N*-hydroxyethyl, *N*-isopropyl-dithiocarbamate), Cd[S₂CN(iPr)CH₂CH₂OH]₂.
 Z. Kristallogr. 231 (2016) 113–126.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of catena-{[tri-aqua-di-sodium bis(2-{[n-butyl(methyl) carbamothioyl]sulfanyl}acetate])}_n, [C₁₆H₃₄N₂Na₂O₇S₄]_n Z. Kristallogr. NCS 234 (2019) nrcs-2019-0513.