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Secondary-Bonding (Chaclogen Bonding)
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Ebselen®
anti-inflammatory,
anti-oxidant and cytoprotective activity

Secondary-Bonding (Chaclogen Bonding)

Se-0 in Ebselen® ~8 kcal/mol

c-hole
cF, chal Halogen bonding
Chalcogen bonding
Pnicogen bonding
Tetrel bonding
CF Br CFyl
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Not just a solid-state phenomenon
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Zinc thiolates: tuning supramolecular

aggregation

Molecular paving with zinc xanthates

Tailoring luminescence

Structural diversity in Zn(S,COR),
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Examine structures for which R = Et, nPr & iPr

R =iPr

isolated

tetramer




Structural diversity in M(S,COR),
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Examine other structures for which
M = Ni(IT) & Te(II); R = Et, nPr & iPr

Ni(S,COR), for R = Et, nPr & iPr
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Te(S,COR), for R = Et, nPr & iPr

Ab initio molecular orbital calculations

on —S,COR
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Molecular paving with Zn(S,COR),
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3-D exclusion zone

Molecular paving with Zn(S,COnPr),
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2-D exclusion zone

Molecular paving with Zn(S,COEt),
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Alcohol-O-H...O(alcohol) Hydrogen
Bonding

Chem. Mater. 1994, 6, 1307-1312 1907

Anomalous Space-Group Frequencies for Monoalcohols
oHg
Carolyn Pratt Brock® and Laura L. Duncan
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
Received February 2, 1994. Revised Monuscript Received March 14, 1994%

Consideration of the spatial requirements of OH0 bonds suggests that the frequencies of
‘high-symmstry space groups, which are more likely than low-symmetry groups to be chiral or
hould be dis i s H.OH.

Structures havi i much more

frequently for monoalcohols than for molecular crystals in general. These predictions have

been confirmed using crystallographic information retrieved from the Cambridge Structural
f ines C,HNHj are m ited, but

Database. Data for
1o follow the same crystallization pattern.




Alcohol-O-H...O(alcohol) Hydrogen Bonding
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Steric bulk moderates hydrogen bonding

“All good proton donors and acceptors are used in hydrogen bonding” (M. C. Etter, Ace. Chem. Res.,
1990, 23, 120-126). This is Margaret Etter’s first rule, part of pioneering work which has proven both
insightful and accurate over the intervening 20 years since its publication. In this work we question

wheth, od denor or acceptor can be identified solely rom a chemical perspective, e.g. given only
of the organic structures in the Cambridge Structural

acl 1l diagram. Results indicate that
Database which in what would by
bond. We have revealed in 2/3 of the ¢
responsible ie. due 1o steric crowding by neighbouring atoms. We have further identified significant

idered a strong donor and an acceptor do not hydrogen

donors or acceptors with reduced accessible surface are
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Coordination polymers of zinc-triad
elements

Solid-state polymers cf. solution

Zn(S,COR), + bridging ligands

-5 -

S xanthate ﬂ,-\\;\a\ 1 w:\:\

Zinc(1,1-dithiolate), + bpe
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trans-1,2-bis(4-pyridyl)ethylene (bpe)

Zinc(xanthate), + bpe

Zinc(xanthate), + bpe
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Implications for solid-state luminescence
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Introducing hydrogen-bond functionality
into dithiocarbamate ligands

-s /CHECHZOH
HOCH,CH,(R)INH + CS; + MOH ——= m* N\
R = Me, Et, nmmCHzOH B R

\—

Au-Au

Cadmium dithiocarbamates:
{Cd[SZCNEfZJZ(“‘Z_bPe)}n

Cadmium dithiocarbamates:
{Cd[S,CN(iPr)CH,CH,0H],},+ bpe

Cadmium dithiocarbamates:
{Cd[S,CN(iPr)CH,CH,0H],},+ bpe

Product regardless of the ratio of reagents
2:1, 1.1 and 1:2

Family of Intermolecular Interactions
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Table 2

Seleeted bond lengths and angles of sodium diaqualenamate-water (1/1). fr——

Bond type

o Na—o2w

Na—O1W

Ml Na—O2W

Bond length (A)

2.3553 (18)
2

1267 (2)
1257 (2)
1.380 (3)
1.403 (3)
1.497 (2)

Symmetry codes: (i) 1 - x, 2 — y, | = z; (ii) |

Angle type

O2W—Na—01W
O2W —Na—02W*
O1W—Na—02W
O2W —~Na—01'
O1W-—-Na—-01
O2W-Na—-01

O02W'—Na—O1w"

O1W—-Na—O01W*
O2W—Na—01w*
01 —Na—01W"
Na—OlW—Na"
Na—O2W—Na'
C1—-01-Na
o2-Cl1-01
C3-N1-C8

52=y,2-2

Angle (*)

103.43 (7)
83.76 (7)
99.36 (7)
117.64 (6)
138.62 (7)
90.33 (6)
96.53 (7)
S181(6) |
17871 (6) ©
8842 (6) ..
98.19 (6)
96.24 (4)  |he
12468 (11) | =
12233 (16) |**
12698 (17)




Family of Intermolecular Interactions Family of Intermolecular Interactions
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The polymeric structure of sodium fenamate-water (U/1). Displa-
ottt e o up to15 kcal/mol  up to 15 kcal/mol  up to 9 kcal/mol

Conclusions

INVERSE
COORDINATION
CHEMISTRY

A NOVEL CHEMICAL CONCEPT

NCT's have around the same energy
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Steric bulk can moderate NCI's

A competition between coordinate bonds and
hydrogen bonding?
Au--Au
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Fortuna Eruditis Favet (“Fortune favours the prepared mind")




