Yee Seng Tan and Edward R.T. Tiekink*

Crystal structure of *catena*-poly{[µ₂-1,2bis(diphenylphosphino)ethane] dichloridocadmium(II)}, C₂₆H₂₄CdCl₂P₂

https://doi.org/10.1515/ncrs-2019-0371 Received May 26, 2019; accepted July 26, 2019; available online August 17, 2019

Abstract

C₂₆H₂₄CdCl₂P₂, monoclinic, P2₁/n (no. 14), a = 13.2003(1) Å, b = 11.4655(1) Å, c = 16.7390(1) Å, $\beta = 100.955(1)^{\circ}$, V = 2487.25(3) Å³, Z = 4, $R_{gt}(F) = 0.0173$, $wR_{ref}(F^2) = 0.0451$, T = 100(2) K.

CCDC no.: 1943374

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Prism, colorless
Size:	$0.16 \times 0.13 \times 0.09~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	10.31 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω -scans
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	29109, 4433, 0.027
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 4326
N(param) _{refined} :	280
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX and ORTEP [4]

Source of material

The title compound was prepared by direct crystallisation using a layering method. 1,2-Bis(diphenylphosphino)ethane (Sigma-Aldrich; 0.00597 g, 0.015 mmol) was dissolved in chloroform (Merck; 5 mL) and transferred to a 14 mL test tube. This was followed by careful layering of a buffer solution [a mixture of chloroform and ethanol (Merck; 1/1 ν/ν , 2 mL)]. Then, an ethanol solution (5 mL) of cadmium chloride (Acros Organic; 0.0275g, 0.015 mmol) was carefully layered upon the buffer solution. The test tube was sealed with a cap and allowed to stand under ambient conditions. Colourless blocks were formed after two days. Yield: 0.0756g (86.6%). **M. pt** (MelTemp Melting Point Apparatus): 528–531 K. **IR** (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm⁻¹): 1401 (w) ν (P–CH₂); 1122 (m) ν (P–C_{aromatic}) cm⁻¹.

Experimental details

The C-bound H atoms were geometrically placed (C– H = 0.95-0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Discussion

Crystal structure determinations of phosphane adducts of cadmium halides are relatively rare, with the chlorides,

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 Yee Seng Tan et al., published by De Gruyter. [(ෆ) ву License.

Table 2: Fractional atomic coordinates and isotropic or equivalentisotropic displacement parameters ($Å^2$).

Atom	X	у	Z	U _{iso} */U _{eq}
Cd	0.24099(2)	0.37614(2)	0.45720(2)	0.01141(5)
Cl1	0.24002(3)	0.42277(4)	0.31518(2)	0.01976(10)
Cl2	0.14136(3)	0.21392(4)	0.49648(3)	0.01880(9)
P1	0.43166(3)	0.32444(4)	0.50754(2)	0.01034(9)
P2	0.16690(3)	0.54591(4)	0.53154(2)	0.01027(9)
C1	0.46585(13)	0.30945(14)	0.61680(10)	0.0118(3)
C2	0.38808(13)	0.27560(15)	0.65818(10)	0.0144(3)
H2	0.3208	0.2592	0.6286	0.017*
C3	0.40907(14)	0.26595(16)	0.74219(11)	0.0179(4)
H3	0.3562	0.2422	0.7701	0.021*
C4	0.50687(14)	0.29084(17)	0.78576(11)	0.0206(4)
H4	0.5210	0.2841	0.8434	0.025*
C5	0.58404(14)	0.32565(17)	0.74510(11)	0.0212(4)
H5	0.6509	0.3433	0.7750	0.025*
C6	0.56391(13)	0.33485(16)	0.66104(11)	0.0173(4)
H6	0.6171	0.3585	0.6335	0.021*
C7	0.47758(13)	0.19894(15)	0.45880(10)	0.0134(3)
C8	0.56929(14)	0.14136(16)	0.49142(12)	0.0164(4)
H8	0 6079	0 1637	0 5430	0 020*
(9	0.60379(14)	0.05108(16)	0 44790(13)	0 0212(4)
НО	0 6661	0 0115	0 4698	0.0212(4)
C10	0.54756(16)	0.01878(17)	0.37283(12)	0.023(4)
H10	0.547 50(10)	0 0/22	0.3/203(12)	0.0243(4)
C11	0.5721	-0.0422 0.07/5/(18)	0.3401	0.027
С11 Ц11	0,43300(17)	0.07494(10)	0.94099(12)	0.0201(4)
(12	0.41/1	0.0012	0.2093	0.001
	0.42082(13)	0.10465(17)	0.36337(11)	0.0202(4)
(13	0.5560	0.2034	0.3010	0.024
	0.51508(15)	0.44100(15)	0.40107(10)	0.0130(3)
	0.5664	0.4227	0.5029	0.016*
П13Б С14	0.5033	0.4492	0.4220	0.016
C14	0.15531(12)	0.68822(15)	0.48320(10)	0.0119(3)
	0.12975(15)	0.78720(16)	0.52575(11)	0.0165(4)
П15 С17	0.1193	0.7810	0.5782	0.020*
	0.11947(14)	0.89424(16)	0.48488(12)	0.0203(4)
П10 С17	0.1023	0.9614	0.5128	0.024
	0.13424(15)	0.90376(16)	0.40515(15)	0.0241(4)
П1/ С10	0.1274	0.9774	0.3/8/	0.029
C18	0.15894(15)	0.80610(18)	0.36423(12)	0.0240(4)
H18	0.1688	0.8128	0.3097	0.029^
019	0.16940(13)	0.69796(16)	0.40275(11)	0.0170(4)
H19	0.1861	0.6310	0.3745	0.020^
C20	0.23597(12)	0.56992(15)	0.63519(10)	0.0126(3)
C21	0.31405(13)	0.65336(1/)	0.65099(11)	0.0165(4)
H21	0.3281	0./011	0.6080	0.020*
C22	0.3/145(14)	0.66/16(18)	0./2913(12)	0.0222(4)
H22	0.4248	0.7239	0./393	0.02/*
C23	0.35093(15)	0.59816(19)	0.79242(12)	0.0229(4)
H23	0.3895	0.6082	0.8460	0.027*
C24	0.27397(14)	0.51480(18)	0.77695(11)	0.0218(4)
H24	0.2601	0.4674	0.8201	0.026*
C25	0.21690(14)	0.49968(16)	0.69913(11)	0.0173(4)
H25	0.1648	0.4415	0.6892	0.021*
C26	0.03491(12)	0.50648(15)	0.54192(10)	0.0127(3)
H26A	0.0363	0.4321	0.5721	0.015*
H26B	0.0068	0.5676	0.5734	0.015*

naturally, being the most represented. For the chlorides, the first structure determined for this class of compound was that of monomeric $CdCl_2(PPh_3)_2$ [5], featuring tetrahedrally coordinated cadmium within a Cl₂P₂ donor set. It turns out that all the other structurally determined compounds feature potentially bidentate di-phosphane ligands. Often these are chelating, leading to monomeric species such as in the case of CdCl₂(dppf) [6]; dppf is 1,1'-bis(diphenylphosphanyl)ferrocene. There is only a single example of bidentate, bridging di-phosphane leading to a one-dimensional coordination polymer, namely in the 1:1 structure formed between CdCl₂ and (R,R)-trans-4,5bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxalane [7]. In continuing studies into the formation of coordination polymers with cadmium(II) nodes [8-11], the crystal and molecular structures of the title one-dimensional coordination polymer $[CdCl_2(dppe)]_n$, was determined; dppe is 1,2bis(diphenylphosphino)ethane.

The asymmetric unit is shown in the top view of the Figure (70% probability displacement ellipsoids), and comprises a cadmium(II), two chloride atoms and two half dppe molecules, each disposed about a centre of inversion [C13-C13ⁱ and C26–C26ⁱⁱ for symmetry operations (i) 1 - x, 1 - y, 1 - z and (ii) -x, 1 - y, 1 - z]. The cadmium is tetrahedrally coordinated within a Cl₂P₂ donor set. The Cd-Cl1, Cl2 bond lengths of 2.4342(4) and 2.4391(4) Å are very close to each other but, there is a greater disparity in the Cd-P1, P2 bond lengths, that is, 2.5672(4) and 2.5993(4) Å, respectively. The tetrahedral angles span a range of about 20° with the most acute angle of 99.835(14)° being subtended by the Cl2 and P2 atoms. The widest angle of 121.849(15)° is subtended by the chloride atoms. As the dppe ligands are μ_2 -bridging, the result is the formation of a one-dimensional coordination polymer, as shown in the lower view of the Figure (only ipso-carbon atoms are shown and all hydrogen atoms have been omitted). The chains extends along the a-axis direction with repeat units propagated by inversion symmetry so the topology of the chain is zig-zag.

In the crystal, the chains are connected into a three-dimensional architecture by $\pi-\pi$ interactions occurring between centrosymmetrically-related (C7–C12) rings [inter-centroid separation = 3.8158(11) Å for symmetry operation (iii) 1 - x, -y, 1 - z] as well as phenyl-C–H··· π (phenyl) interactions [C3–H3···Cg(C20–C25) = 2.74 Å, C3···Cg(C20–C25) = 3.581(2) Å and angle at H3 = 148° for symmetry operation (iv) 1/2 - x, -1/2 + y, 3/2 - z]. In order to analyse the molecular packing in more detail, an analysis of the calculated Hirshfeld surfaces was conducted using Crystal Explorer 17 [12] following established procedures [13]. The association between

chains are dominated by non-directional $H \cdots H$ (50.0%) and $Cl \cdots H/H \cdots Cl$ (16.4%) contacts. The presence of $C \cdots H/H \cdots C$ (27.5%) along with $C \cdots C$ (2.5%) contacts also make discernable contributions to the surface.

Among the cadmium dihalides having a P_2CdX_2 core, the most closely related structure is that of the $CdI_2(dppe)$ species, isolated as a di-hydrate [14]. This is also a onedimensional coordination polymer resembling the structure reported herein.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- 1. Rigaku Oxford Diffraction: CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England (2017).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallog. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Cameron, A. F.; Forrest, K. P.; Ferguson, G.: Crystal and molecular structure of bistriphenylphosphinecadmium(II) chloride. J. Chem. Soc. A. (1971) 1286–1289.
- Zhu, C.; Yang, L.; Li, D.: [1,1'-Bis(diphenylphosphanyl) ferrocene-κ²P,P']dichloridocadmium(II) dichloromethane disolvate. Acta Crystallogr. **E66** (2010) m1586.
- Li, J.-X.; Du, Z.-X.; An, H.-Q.; Zhou, J.; Dong, J.-X.; Wang, S.-R.; Zhu, B.-L.; Zhang, S.-M.; Wu, S.-H.; Huang, W.-P.: Syntheses, crystal structures and fluorescent properties of R,R-DIOP based

copper(I) and cadmium(II) complexes {R,R-DIOP = (4R,5R)trans-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3dioxalane} J. Mol. Struct. **935** (2009) 161–166.

- Tan, Y. S.; Sudlow, A. L.; Molloy, K. C.; Morishima, Y.; Fujisawa, K.; Jackson, W. J.; Henderson, W.; Halim, S. N. Bt. A.; Ng, S. W.; Tiekink, E. R. T.: Supramolecular isomerism in a cadmium bis(N-hydroxyethyl, N-isopropyldithiocarbamate) compound: physiochemical characterization of ball (n = 2) and chain (n = ∞) forms of {Cd[S₂CN(iPr)CH₂CH₂OH]₂. solvent}_n. Cryst. Growth Des. **13** (2013) 3046–3056.
- Tan, Y. S.; Halim, S. N. A.; Tiekink, E. R. T.: Exploring the crystallization landscape of cadmium bis(N-hydroxyethyl, *N*-isopropyl-dithiocarbamate), Cd[S₂CN(iPr)CH₂CH₂OH]₂.
 Z. Kristallogr. - Cryst. Mat. **231** (2016) 113–126.
- Ahmad, J.; How, F. N.-F.; Halim, S. N. A.; Jotani, M. M.; Lee, S. M.; Tiekink, E. R. T.: A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z. Kristallogr. - Cryst. Mat. 234 (2019) 341–349.
- Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) article no. 18 (29 pages).
- Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.
- Liu, X.; Liu, Y.; Hao, Y.; Yang, X.-J.; Wu, B.: Square helix versus zigzag chain of group 12 metal coordination polymers with 1,2bis(diphenylphosphino)ethane (dppe). Inorg. Chem. Commun. 13 (2010) 511–513.