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Abstract: Discovery of a potent drug nanocarrier is crucial for cancer therapy in which drugs often
face challenges in penetrating efficiently into solid tumours. Here, biosynthesis of silver nanoparticles
(AgNPs) using a waste material, Garcinia mangostana (GM) fruit peel extract is demonstrated. The best
condition for AgNPs synthesis was with 0.5 g of peel extract, 7.5 mM silver nitrate at 45 ◦C, ~pH 4 for
16 h. The synthesized AgNPs were spherical and 32.7 ± 5.7 nm in size. To test its efficiency to be
used as drug carrier, plant-based drug, protocatechuic acid (PCA) was used as a test drug. AgNPs
loaded with PCA (AgPCA) resulted in 80% of inhibition at 15.6 µg/mL as compared to AgNPs which
only killed 5% of HCT116 colorectal cells at same concentration. The IC50 of AgNPs and AgPCA for
HCT116 were 40.2 and 10.7 µg/mL, respectively. At 15.6 µg/mL, AgPCA was not toxic to the tested
colon normal cells, CCD112. Ag-based drug carrier could also potentially reduce the toxicity of loaded
drug as the IC50 of PCA alone (148.1 µg/mL) was higher than IC50 of AgPCA (10.7 µg/mL) against
HCT116. Further, 24-h treatment of 15.6 µg/mL AgPCA resulted in loss of membrane potential in the
mitochondria of HCT116 cells and increased level of reaction oxygen species (ROS). These could be
the cellular killing mechanisms of AgPCA. Collectively, our findings show the synergistic anticancer
activity of AgNPs and PCA, and its potential to be used as a potent anticancer drug nanocarrier.
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1. Introduction

Nanoparticles (NPs) such as gold (AuNPs), silver (AgNPs), iron (FeNPs), copper (CuNPs), zinc
(ZnNPs), platinum (PtNPs) and so on can be synthesized via various methods. Conventionally, NPs
synthesis is separated into chemical and physical approaches [1]. In general, chemical approach
that uses sodium borohydride, formamide, sodium citrate and ascorbic acid as reducing agents
for NPs production is accompanied with toxicity issue [2]. After the synthesis, large amount of
surfactant and solvent must be removed before using them for downstream applications [3]. Other
alternative such as pro-ecological chemical synthesis has refined the chemical synthesis method by
utilising synthetic eco-friendly chemical compounds, hence reducing the use of toxic substances for
NP production [4]. On the other hand, physical approach consumes high level of energy which
leads to higher cost [3]. Therefore, green synthesis or green method is introduced to overcome these
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limitations as green synthesis does not involve toxic agents for NP production. The production of NPs
using green synthesis is highly simple and facile [5]. NPs can be produced in moderate environment
without using elevated temperature or pressure, hence conserving substantial energy which makes it
an environmental-friendly and cost-effective method [6]. Among different types of green synthesis
method, the most common method is the extracellular NPs production method [4,7]. This method
utilises bio-reagents such as bacteria, fungi, enzymes, and plants as both reducing and stabilizing
agents [8–10]. Amongst all, plants-mediated synthesis is preferred as the morphology of resulting NPs
can be easily manipulated by varying different parameters [11–14]. Each part of plants can be utilised
for NPs synthesis, leaves being the most common part as compared to others such as bark, fruit, seed,
flower, root and peel [15].

Garcinia mangostana (GM) or commonly known as purple mangosteen is a tropical evergreen tree
originated from Sunda Islands and the Moluccas of Indonesia. It has an inedible, deep reddish-purple
coloured pericarp when becomes ripe. It has been reported that GM has high antioxidant property
because the plants extract is rich in phenolic compounds such as xanthones that can be found in pericarp
(peels) [16]. In the past, 60 types of xanthones had been isolated from the GM pericarp [17]. Similarly,
GM has also been associated with other pharmacological actions such as antitumor, antibacterial,
antifungal and antiviral activities [12–14,18,19]. Mechanisms of anticancer xanthones have previously
been revealed, including induction of apoptosis through regular cell death pathways, suppression of
cell proliferation, and inhibition of metastasis by blocking the anti-apoptotic molecules and cell cycle
arrest [20].

Silver nanoparticles (AgNPs) have emerged as one of the popular and important NPs for biomedical
applications. Recent findings have shown that silver ions and/or AgNPs can be used for wound
dressing [21,22], burn treatment [22], antibacterial application [21], dental materials [23], sunscreen
lotion [24] and so on. AgNPs possess low toxicity in small quantity, high thermal stability and low
volatility [25]. Anticancer property of AgNPs is also being extensively studied. AgNPs is capable
to induce the generation of reactive oxygen species (ROS) and thus destroying the mitochondrial
respiratory chain of cancer cells. Other cancer killing mechanisms of AgNPs include induction of cell
apoptosis and autophagy [26,27], inhibition of cell migration and invasion [27], and induction of lactate
dehydrogenase leakage (LDH) [28]. In the past, AgNPs have demonstrated cytotoxic effect towards
MCF-7 breast cancer cells at 20 µg/mL for 48 h [25]. AgNPs also suppressed lung cancer cells, H1299 in
which 50% of cells were killed at 5 µg/mL [29]. In colorectal cancer cells, AgNPs have shown effective
killings at 5 to 28 µg/mL in cell lines such as HCT116 [28], Caco-2 [30] and HT-29 [31]. Furthermore,
AgNPs have also been shown to have great potential to act as nanocarrier to deliver anticancer drugs
to the cancer cells [32,33]. These evidences highly support the potential use of AgNPs for cancer
chemotherapy and chemoprevention in near future. However, concerns regarding the off-target
toxicities of AgNPs on the non-cancer or normal cells such as fibroblasts [34], and monocytes [35] have
been raised by several research groups before. Hence, it is extremely important to take the specificity of
AgNPs into account during the process of AgNPs synthesis and the exploration of its biomedical value.

This study reports the synthesis of AgNPs from GM, and their characterisation using different
parameters such as amount of GM peels extract, concentration of AgNO3, temperature and pH.
The size and shape of AgNPs were determined using UV-visible spectroscopy and transmission
electron microscopy (TEM). AgNPs were then loaded with protocatechuic acid (PCA), an anticancer
metabolite to investigate its potency as drug nanocarrier. PCA-loaded AgNPs (AgPCA) demonstrated
synergistic anticancer effect towards colorectal cancer cell line, HCT116 when compared to the AgNPs
and PCA alone. More promisingly, the active dose of AgPCA did not show cytotoxicity towards the
colon normal cell line, CCD112 when tested in parallel. To the best of our knowledge, this is the
first report showing the potent anticancer action of AgPCA against human colon cancer cells and its
possible underlying killing mechanisms.
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2. Materials and Methods

2.1. Materials

GM fruit were collected from an orchard located at Terengganu, Malaysia. Silver nitrate (AgNO3,
>99.8%) (#19768) was purchased from Acros Organics, UK as a precursor. Sodium hydroxide (#2064),
hydrochloric acid (#1137) and phosphate buffer saline (PBS) (#1739) were obtained from R&M Chemicals,
UK. Protocatechuic acid (PCA, ≥97%) (#37580) was purchased from Sigma-Aldrich, MO, USA. All
reagents used were of analytical grade.

2.2. Preparation of Crude GM Fruit Peel Extract

GM peel were collected and washed thoroughly with tap water to remove dirt. The peels were
washed again with distilled water before drying in an oven at 40 ◦C. All the peels were ground into
fine powder using an electrical blender and stored in an air tight bottle at room temperature for future
use. When needed, fruit peels extracts were prepared using fine powder of GM in 20 mL of deionised
water at 60 ◦C for 30 min.

2.3. Synthesis of AgNPs

20 mL of GM extract was mixed with 10 mL of 10 mM AgNO3 at 45 ◦C with continuous stirring for
16 h. Different parameter or condition such as the concentration of plant extract, the concentration of
AgNO3, temperature and pH were manipulated to determine their effects on the synthesis of AgNPs.

2.4. Loading of PCA into AgNPs

10 mL of nanoparticle suspension was added to 50 mL of 5 mg/mL PCA aqueous solution.
The reaction mixture was left to occur with ultra-sonication (30 amplitudes) for 1 h. The obtained drug
loaded AgNPs (AgPCA) was centrifuged and washed repeatedly for 3 times before drying in the oven
for further characterisation.

2.5. Characterisation

UV-2600 UV-Vis Spectrophotometer (Shimadzu, MD, USA) was used to determine the formation
of NPs in the range of 220 to 800 nm. Peaks at the area 400–500 nm indicate the formation of AgNPs.
After UV-visible spectroscopy, all of the samples were dried in powder form and collected for further
characterisation. Transmission electron microscopy (TEM) images were recorded using JEM-2100F
high-resolution transmission electron microscope (HR-TEM) from JEOL, Tokyo, Japan to determine
the morphology, size and distribution of the samples. Crystallinity of the NPs was confirmed using
Empyrean X-ray diffractometer (XRD) from Malvern Panalytical, UK where the powder samples
were analysed at 45 kV and 40 mA over a range of 2θ = 30–80◦. Infrared spectroscopy (IRTracer-100,
Shimadzu, MD, USA) was used to detect the functional groups present in the synthesized NPs. Spectra
were recorded with 16 scan per sample at the range of 600–4000 cm−1. STA 449 F3 Jupiter (NETZSCH,
Selb, Germany) was used to conduct thermogravimetric analysis (TGA) for the drug loaded AgNPs at
a heating rate of 10 ◦C/min under nitrogen flow at a rate of 50mL/min. Encapsulation efficiency was
calculated based on the TGA analysis. Encapsulation efficiency is the amount of drug loaded per unit
weight of the NPs [36]. The drug encapsulation efficiency was calculated using the equation below:

Encapsulation efficiency =
(total drug− free drug)

total drug
× 100 [%] (1)

2.6. Drug Release

5 mg AgNPs were suspended in 5 mL PBS (adjusted to pH 5.0) which was then placed into
dialysis bags with the two ends tied. The dialysis bags were immersed fully into 40 mL of the release
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medium (PBS) with constant stirring of 100 rpm. The whole system was incubated at 37 ◦C. 1 mL
aliquot was sampled from the system at 15-min interval for the first hour and every hour afterwards
for 25 h. An equal volume (1 mL) of fresh medium was immediately replenished to keep the volume
constant. The collected samples were then analysed using UV-visible spectrophotometer at 250 nm.

2.7. Cell Culture

HCT116 (ATCC CCL-247) colorectal carcinoma and CCD112 (ATCC CRL-1541) colon normal cell
lines were purchased from American Type Culture Collection (ATCC, VA, USA). Both cell lines were
maintained in Dulbecco’s Modified Eagle’s medium (DMEM, #12800) supplemented with 10% fetal
bovine serum (FBS) (#16000-044) and 1% penicillin/ streptomycin (#15140122) from Life Technologies,
CA, USA. CellTiter 96 Aqueous One Solution or MTS reagent (#G3582, Promega, WI, USA) was
purchased to evaluate the cytotoxicity of NPs on the cell lines as described below.

2.8. Cytotoxicity Assay

To determine the cellular killing effect of NPs, MTS assay was performed according to the
manufacturer’s instruction with slight modification as previously described by our group [13]. Briefly,
5000 HCT116 and CCD112 cells per well (100 µL/well) were seeded onto a 96-well plate and incubated
overnight at 37 ◦C in a 5% CO2 incubator. The next day, 2-fold serially diluted NPs (250, 125, 62.5,
31.3, 15.6, 7.8, 3.9, 0 µg/mL) (100 µL/well) were added into the wells and the plate was incubated for
72 h at 37 ◦C in the 5% CO2 incubator. Then 20 µL MTS reagent per well was added into the plate
and incubated for additional 3 h at 37 ◦C in the 5% CO2 incubator. The optical density (OD) was then
measured at 490 nm using a multimode microplate reader (Tecan, Switzerland). The dose response
graph was plotted by calculating the percent cell viability using the formula below:

%Cell viability =
OD of sample well (mean)
OD of control well (mean)

× 100 (2)

In addition, the inhibitory concentration causing 50% growth inhibition (IC50 value) was also
determined using an online calculator (https://www.aatbio.com/tools/ic50-calculator). The images of
cells treated with/ without the NPs were captured using an inverted microscope attached to a camera
system (IM3 Phase contrast, Optika, Italy) at magnification of 10×.

2.9. Mitochondrial Membrane Potential (JC-1) Assay

Cell vitality status was evaluated by examining the cellular mitochondrial function using JC-1
Mitochondrial Membrane Potential Assay Kit (#10009172, Cayman Chemical, MI, USA) following the
manufacturer’s instruction. HCT116 cells were treated with 15.6 µg/mL AgPCA for 24 h as previously
described [28,30] and the mitochondrial behaviour was assessed through JC-1 staining. In healthy cells,
JC-1 forms complexes and form aggregates in red fluorescence meanwhile unhealthy cells (i.e., cells
undergoing apoptosis) exhibit green fluorescence. The health status of cells was measured using
microplate reader method and fluorescence microscopy. Samples were observed under an inverted
fluorescence microscope (Nikon Eclipse Ti-S, Japan) and images were captured using the Nikon
NIS-Elements (Japan) microscope imaging software.

2.10. Reactive Oxygen/Superoxide Species Assay

Real-time ROS and superoxide production in cells was measured by flow cytometry (BD
FACSCalibur, NJ, USA) using ROS-ID Total ROS/Superoxide detection kit (#ENZ-51010, Enzo Life
Sciences, NY, USA). 2× 105 HCT116 cells/well were seeded onto a 12-well plate, treated with 15.6 µg/mL
AgPCA for 24 h as previously described [28,30] and processed following the manufacturer’s instruction.
Cells treated with 200 µM ROS inducer, pyocyanin and 5 mM ROS inhibitor, N-acetyl-L-cysteine
(provided by the kit) were used as the positive and negative controls, respectively. Data was analysed

https://www.aatbio.com/tools/ic50-calculator
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and dot plots was plotted using CellQuest Pro software (BD, NJ, USA). To reconfirm the data,
fluorescence microplate method was performed on a black 96-well plate (Pelkin Elmer ViewPlate)
using the same kit. After the cells treatment as abovementioned, cells were processed following the
manufacturer’s instruction. Fluorescence intensity was measured by microplate reader at fluorescein
(Ex/Em = 488/520 nm) and rhodamine (Ex/Em = 550/610 nm) representative of ROS and superoxide
levels, respectively.

2.11. Statistical Analysis

Independent experiments were repeated at least three times, and the data were expressed as mean
± standard deviation for all triplicates within an individual experiment. Data were analysed using a
Student’s t test p < 0.05 was considered significant.

3. Results

AgNPs were synthesized using GM crude peels extract which act as reducing and stabilising
agent while AgNO3 (silver nitrate) solution acted as Ag precursor. The reaction temperature was
maintained at 45 ◦C with continuous stirring at 500 rpm. The reduction of AgNO3 was indicated by
the colour change from light brown to dark brown after the addition of AgNO3 as shown in Figure 1.
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Figure 1. Change of colour after the addition of AgNO3. (a) crude GM peels extract and (b) crude GM
peels extract with addition of AgNPs solution.

3.1. UV-Visible (UV-Vis) Spectroscopy

The effect of the amount of GM peels powder on the formation of AgNPs was evaluated using
UV-vis. As shown in Figure 2a, the UV peaks become sharper following the increase of peels powder.
0.5 g of GM peels powder showed the sharpest peak. However, intensity of 1.0 g peak dropped and a
broad peak was obtained. The spectrum of 0.5 g of GM peels powder reacting with 10 mM AgNO3 gave
the most intense peak at the position of 443 nm. Concentration-dependent shift of peaks was observed
following the increased concentration of AgNO3 (Figure 2b). 1 mM and 2.5 mM did not contribute to
the production of AgNPs because no increase in intensity were observed. When the concentration of
AgNO3 increased, the intensity of UV-vis peak absorbance increased. 10 mM of AgNO3 gave the most
intense peak at 465 nm. Red shift was observed from 433 nm (5 mM) to 465 nm (10 mM), suggesting
that aggregates or larger size of NPs were formed [37]. From Figure 2c, the reaction temperature of
45 ◦C gave the highest peak at 437 nm. A blue shift was observed from 439 nm (27 ◦C) to 434 nm
(75 ◦C). Subsequently, the effect of pH was investigated using NaOH. As shown in Figure 2d, rapid
reaction was observed when the pH of the GM crude extract turned into alkaline. Absorbance peak
was observed at 443 nm, 414 nm and 410 nm when the pH of the GM extract increased to pH 4, 7 and
10, respectively.
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Figure 2. UV-visible spectra of AgNPs synthesized with various parameters: (a) amount of peels
powder, (b) concentration of AgNO3, (c) temperature and (d) pH.

3.2. Transmission Electron Microscopy (TEM)

The size and shape of AgNPs were examined using TEM. As shown in Figure 3a,b the amount of
peels powder significantly affected the formation of AgNPs. With 0.2 g of GM peels powder, AgNPs
had wider particles size distribution. The shape of AgNPs was mostly spherical with some rod shape.
At 0.5 g GM powder, the size of AgNPs increased from average size of 25.62 to 50.25 nm. Figure 3c,d
show the AgNPs synthesized at 2 and 7 mM AgNO3. At 2 mM, the mean size of NPs was 13.23 nm.
As shown in Figure 3c, the smaller NPs tend to aggregate together while bigger size NPs did not show
the same observation. Low concentration (2 mM) of AgNO3 produced smaller NPs as compared to the
higher concentration (7.5 mM). However, 7.5 mM of AgNO3 produced AgNPs with better dispersion.
The effect of reaction temperature was also studied as shown in Figure 3e,f. At room temperature
(27 ◦C), distorted spherical shape NPs with an average size of 49.91 nm were observed. At moderate
temperature (45 ◦C), more uniform spherical AgNPs with an average size of 33.61 nm were produced.
Lastly, the effect of pH was also studied as shown in Figure 3g,h. The mean size of AgNPs at pH 4
was 32.7 nm while most of the NPs were spherical in shape. When the pH of the extract environment
increased to pH 7, the average size of the NPs decreased to 7.12 nm. The AgNPs were well-distributed
as shown in Figure 3h. Notably, the samples became unstable and degraded at pH 7 during the
TEM preparation.
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Figure 3. TEM of AgNPs synthesized by various parameters: amount of peel powder, (a) 0.2 g, (b) 0.5
g; concentration of AgNO3, (c) 2 mM, (d) 7.5 mM; temperature: (e) 27 ◦C, (f) 45 ◦C; and pH (g) pH 4
(h) pH 7.

3.3. X-ray Diffraction (XRD) Analysis

AgNPs were synthesized using the optimal conditions (0.5 g peels powder, 7.5 mM AgNO3, 45 ◦C,
pH 4) and analysed by XRD as shown in Figure 4a. Intense peaks were observed at 2θ = 38.53◦, 44.79◦,
64.96◦ and 77.69◦ which corresponded to the (111), (200), (220) and (311) planes, representing the fcc
structure of metallic Ag. Three additional peaks were observed in the XRD pattern at 30.19◦, 32.74◦

and 46.76◦. The particle size of AgNPs can be estimated using the the Debye-Scherrer equation. Using
the Scherrer equation, 26 nm was calculated to be the average crystallite size of the AgNPs.

3.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

As shown in Figure 4b, major stretching appeared at the region of 3000–3500 cm−1 and
1000–1600 cm−1 for both GM and AgNPs spectra. After the loading of PCA, the spectrum of
AgPCA changed and become similar to the spectrum of PCA. Both GM and PCA contains O-H stretch
in their structure originally at region of 3280 cm−1 and 3179 cm−1 respectively as shown in Figure 4b.
The presence of O-H stretch at 3278 cm−1 and 3280 cm−1 for AgNPs and GM respectively, are related
to phenols and flavonoids [38]. During the synthesis of AgNPs, the shifting of O-H stretch from
3280 cm−1 to 3278 cm−1 is related to the binding of AgNPs to the GM extract [39]. After the loading of
PCA onto the AgNPs, shifting occured from 3179 cm−1 to 3197 cm−1, suggesting that reaction occured
at this stretch.
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Figure 4. (a) XRD spectra of AgNPs and the intensity peak of reference data and (b) FTIR graphs of
GM, AgNPs, PCA and AgPCA.

The presence of C-H bond was detected at the region of 2914 cm−1 (GM) and 2929 cm−1 (AgNPs),
suggesting that xanthone and other compounds in the peels extract were present [40]. The region
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of 1700 cm−1 shows the presence of C = O stretching for both GM and AgNPs [41]. The increase of
intensity indicated that more C = O bonds were formed following the initiation of reaction.

C-C ring aromatic bond was shown at the region of 1500–1600 cm−1. This confirmed the presence
of aromatics structure in the GM extract. Another C-C aromatics stretch was observed in both spectra at
the region of 1440 cm−1 and 1444 cm−1 for AgNPs and GM, respectively. This data is highly associated
with the aromatic backbone of organic compounds that can be found mainly in the pericarp of GM [42].

Finally, the band at 1045 cm−1 for both spectra was associated to C-O-C stretch [41]. All the above
results match with xanthone, flavonoids, and other compounds that could derived from the pericarp
of GM [18,43]. A simple schematic illustration is based on the known organic compounds present in
GM peels extract was presented as shown in Figure 5.
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3.5. Thermogravimetric Analysis (TGA)

After sonication of AgNPs with PCA for 5 h, the loading was confirmed using UV-vis spectroscopy
as shown in Figure S1 where two peaks (250 nm and 288 nm) related to PCA were observed. AgPCA
was then analysed using TGA to calculate the loading efficiency of AgNPs because TGA can confirms
the content of the PCA and PCA loaded AgNPs as shown in Figure 6a [44]. Figure 5a indicated the
thermal analysis of the drug and drug-loaded AgNPs. PCA showed three main weight loss stages.
The first weight loss stage (4.64%) occurred at 138 ◦C. Second stage of weight loss (77.64%) occurred at
200–299 ◦C. The last stage of weight loss (6%) occurred at the region of 299–350 ◦C. Drug-loaded NPs
only showed single stage of weight loss at the region of 240–299 ◦C. From the TGA data, encapsulation
efficiency and drug loading efficiency were calculated. The encapsulation efficiency of AgNPs was
38.05%.
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3.6. Drug Release Study

In Figure 6b, PCA solution that acts as a control had a rapid release in about 3 h with a cumulative
release of 9.7%. The release rate of AgPCA was faster as compared to the PCA and the release process
completed in about 4–5 h. A release profile of the first hour was demonstrated in Figure S2 to show
the release rate more clearly in the early stage. The cumulative release percent of AgPCA was 12%.
Release of the samples achieved equilibrium after 12 h and no further changes occurred at 25 h. A drop
was observed at the 4th hours because the release of PCA slowed down at this point. The system
was diluted when the fresh medium was added after the sampling process [45]. Based on the drug
release profile, burst release of AgPCA occurred in the first 15 min. After that, the remaining PCA
were released in a sustained manner for about 6 h before achieving equilibrium. These drug release
data were fitted into five mathematical models (zero order, first order, Hixon-Crowell, Higuchi and
Korsmeyer-Peppas) to understand the mechanism and kinetics of the drug delivery system. AgPCA
fitted into the Higuchi method with R2 of 0.9775 and Korsmeyer-Peppas model with R2 of 0.9710
(Table 1).

Table 1. Kinetic assesment of AgPCA based on various kinetic mathematical models.

Sample
Correlation Coefficient of Model (R2)

Zero Order First Order Hixon-Crowell Higuchi Korsmeyer-Peppas

AgPCA 0.7918 0.7712 0.7651 0.9775 0.9710

3.7. In Vitro Cytotoxicity Assay

Cytotoxic effect of PCA, AgNPs and AgPCA were determined on colon-derived HCT116
(cancerous) and CCD112 (normal) cells up to 250 µg/mL. Table 2 shows the calculated IC50 values for
all the tested compounds. Both AgNPs and AgPCA showed cytotoxic effects against HCT116 cells.
Based on the calculated IC50, the AgPCA (IC50 = 10.73 µg/mL) was more effective than the AgNPs
(IC50 = 40.23 µg/mL). The results also showed that AgPCA was more potent against HCT116 than the
normal cells (IC50 = 27.4 µg/mL). As shown in Figure 7, dose-dependent inhibitions were observed.
31.3 µg/mL and higher concentrations of AgNPs significantly killed both HCT116 and CCD112 cells
(p < 0.05). The level of cytotoxic effect in HCT116 and CCD112 did not show any difference in AgNPs
in most of the tested concentrations (Figure 7A). In contrast, several tested concentrations of AgPCA
(7.81, 15.6, and 31.25 µg/mL) showed higher cytotoxic effect in HCT116 compared to CCD112. Notably,
15.6 µg/mL AgPCA killed almost 80% of HCT116 while did not affect the CCD112 cells (shown by a
red triangle in Figure 7B). This was further supported by microscopic examination which showed high
percentage of cell killing in HCT116 but not in CCD112 cells when tested at 15.6 µg/mL (Figure 8).
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Table 2. IC50 values of protocatechuic acid (PCA), silver nanoparticles (AgNPs) and PCA loaded
AgNPs (AgPCA) against two cell lines.

Cell Line
IC50 with Standard Deviation (µg/mL)

PCA AgNPs AgPCA

HCT116 (cancerous) 148.1 ± 3.72 40.2 ± 2.28 10.7 ± 3.79
CCD112 (normal) 224.4 ± 3.77 47.0 ± 6.59 27.4 ± 1.50
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Figure 7. Cytotoxic effects of nanoparticles (A) AgNPs and (B) AgPCA against colorectal cancer
(HCT116) and colon normal (CCD112) cells. Red triangle shows the selectivity activity of AgPCA on
HCT116, but not CCD112. Data are expressed as mean + standard deviation for triplicates within an
individual experiment. Statistical significance was performed using Student’s t test. (* p < 0.05).

3.8. Mitochondrial Membrane Potential Assay

In addition to MTS assay, the mitochondrial function of AgPCA-treated HCT116 cells was examined
using a commercial kit which is another assay for cell vitality/health determination. Since 15.6 µg/mL of
AgPCA killed almost 80% of HCT116 while remain non-toxic to the normal cells, this concentration was
used for this experiment. In this assay, a cytofluorimetric cationic dye, JC-1 forms complexes known as
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J-aggregates with red fluorescence (rhodamine) in healthy cells, while JC-1 remains in monomeric form
and exhibits green fluorescence (FITC) in unhealthy cells. As shown in Figure 9A, AgPCA-treated
cells showed significantly lower red fluorescence (healthy signal) and higher green fluorescence
(unhealthy signal) respectively when compared to the untreated control (p < 0.05). The calculated ratio
of J-aggregates to J-monomers for the AgPCA-treated cells gave 0.52, indicating the higher number of
unhealthy cells. This result is also supported by fluorescence microscopy in which AgPCA-treated cells
showed dimmer red J-aggregates and slightly brighter green J-monomers compared to the untreated
control at a normalised background (Figure 9B).Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 21 
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Figure 9. Mitochondrial membrane potential analysis of untreated control and AgPCA-treated HCT116
cells. (A) Fluorescence intensity (left) and fluorescence ratio of J-aggregates (rhodamine) to J-monomers
(FITC) (right). Data are expressed as mean + standard deviation for triplicates within an individual
experiment. Statistical significance was performed using Student’s t test. (* p < 0.05). (B) Fluorescence
microscopy of JC-1 staining. FITC (diffuse green J-monomers) indicates the unhealthy status while
rhodamine (red mitochondrial J-aggregates) indicates the healthy status. Images were captured at
magnification of 40X.
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3.9. Oxidative Stress and Superoxide Assay

Oxidative stress and superoxide were measured using a commercial assay kit. The green and
orange fluorescence probes detect the ROS and superoxide, respectively. As shown in Figure 10A, the
increase of ROS and superoxide production were evident in the pyocanin-treated positive control.
Compared to the untreated control, the AgPCA-treated HCT116 cells generated significantly higher
level of ROS (p < 0.05) but not in the superoxide production. This was further supported by the flow
cytometry which showed the increase of ROS from 8.1 to 23.54% (about 3-fold) after 24 h exposure of
AgPCA (Figure 10B).Nanomaterials 2019, 9, x FOR PEER REVIEW 15 of 21 
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Figure 10. Reaction oxygen species (ROS) and superoxide production of untreated control and
AgPCA-treated HCT116 cells. (A) Fluorescence intensity of green (ROS) and orange (superoxide). Data
are expressed as mean + standard deviation for triplicates within an individual experiment. Statistical
significance was performed using Student’s t test. (* p < 0.05). (B) Dot-plots by flow cytometry.
Untreated cells were used as control. Cell debris were ungated. The numbers reflect the percentage of
the cells in each quadrant and are represented by average of three independent experiments. Black
triangle shows the increased level of ROS in AgPCA-treated cells.

4. Discussion

GM is rich in phenolic compounds such as xanthones, α-mangostana, β-mangostana and
flavonoids [17]. Abundant hydroxyl groups were available in these compounds for the reduction of
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AgNPs [46]. It can be speculated that the bioreduction of Ag was through the oxidation of hydroxyl
group which can be represented as [46,47]:

Ag+ + R-OH→ Ag0 + R=O + H+ (3)

Based on the UV-vis results, an increased in the amount of GM peels powder and concentration
of AgNO3 increased the peak intensity of UV-vis spectra. This result suggests that higher amount of
GM peels powder and concentration of AgNO3 speed up the formation of AgNPs as more AgNPs
were formed which is consistent with the previous result [48]. Red shift was observed due to the
increase of interactions between GM peels extract and available silver ions, hence resulting in the
increase of AgNPs size [49]. GM at 1.0 g spectrum showed a reduction in absorption band because of
the aggregation of AgNPs causing the depletion of stable NPs [50]. From our data, 0.5 g of GM peels
powder appears to be the best condition for the synthesis of AgNPs because it gave an intense peek
at 443 nm. Meanwhile, 7.5 mM of AgNO3 appears to be the best condition because it gave a sharp
peak with minimal shift from 433 nm to 441 nm. Furthermore, smaller NPs was formed following the
increase in temperature from 27 ◦C to 75 ◦C as a blue shift was observed. This result suggests that the
increase in temperature leads to the rapid consumption of reactants to form the nuclei and generate
small NPs rather than aggregates [51]. The peak position of AgNPs in acidic condition was at a higher
wavelength, suggesting that the aggregation occurred which might be due to the anion electrostatic
repulsion in the solution [37]. The reduction of AgNPs at different pH conditions is believed to be
caused by the variation of functional groups in the GM peels extract [51]. Broader tailed absorption
bands around 550–700 nm were observed for 10 mM and 45 ◦C because of the different modes of
plasmon excitation from the anisotropic morphology AgNPs [52].

TEM results suggested that the size of the AgNPs increased with an increased amount of GM peels
powder. This result is consistent with the previously reported work [40]. From the observation, low
quantity of GM extract cannot prevent aggregation of the NPs, it was only sufficient for the reduction
of Ag precursor. In contrast, high quantity of GM extract caused excessive growth of the NPs which
is in good agreement with the UV-vis result in which a red shift was observed [53]. Increase in the
concentration AgNO3 produced monodispersed AgNPs that were bigger in size because nucleation was
favoured at low AgNO3 concentration, thus forming AgNPs with smaller size. When the concentration
of AgNO3 increased, NPs growth dominated the reduction process, thus produceing larger AgNPs [54].
In addition, the reaction temperature significantly influenced the particle size of AgNPs. Smaller
size of NPs was produced at a higher temperature, possibly due to the homogenuos nucleation and
rapid reduction of AgNO3 at high temperature [38]. Smaller AgNPs were produced in pH 7 which is
constent with a previous work [54]. This result is in accordance with the UV-vis result in which a blue
shift was observed following the increase of pH. This finding suggests that pH also plays crucial role
in the production of AgNPs. Overall, the TEM images suggest that the optimal parameters to achieve
desirable size and shape of the AgNPs for drug loading are to use 0.5 g GM peels powder with 7.5 mM
AgNO3 and stirred for 16 h at 45 ◦C and pH 4.

The XRD result is in line with the retrived JCPDS file no. 00-004-0783 database [55]. Another
three additional peaks were corresponded to the unreacted AgNO3 that matched the JCPDS file
no. 00-006-0363. These peaks might also be caused by other phytochemical compounds in the
extract [42]. AgNPs produced were fcc in nature.

FTIR results suggested that the presence of O-H stretch were related to phenols and flavonoids [38].
The shifting of O-H stretch were related to the binding of AgNPs to the GM extract and PCA to
AgNPs [39,56]. The present of C-C ring aromatic bond at the region of 1600–1500 cm−1 suggests that
aromatics structure exists in both the GM extract and PCA. C-C aromatic stretchs were observed in
the spectra of GM and AgNPs only. It was relevant to the aromatic back bone of organic compounds
that can be found mainly in the pericarp of GM [42]. All the above results matched with the xanthone,
flavonoids, and other compounds that can be derived from the pericarp of GM [18,43]. Slight shifting
of the C = O bond was observed for both spectra of PCA and AgPCA. This was most probably due to
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the occurance of hydrogen bonding [56]. Reduction in intensity at 941 cm−1 is related to the hydroxyl
moiety of carboxylic group. This result suggests that the reaction occured between the –COOH groups
of PCA and AgNPs [57]. In addition, the FTIR analysis suggested that O-H groups were closely
associated in the stabilization of AgNPs. Surface of the AgNPs is speculated to be positively charged
so that the negatively charged O-H groups can take part in the stabilisation process (Figure 5).

Thermal analysis was carried out to analyse the drug-loaded AgNPs. PCA gave 3 stages of weight
lost where the first stage was corresponded to the loss of absorbed water at 138 ◦C as shown in the
previous work [57]. Second stage of weight lost was related to the decomposition combustion of
PCA [58]. Finally, the last stage of weight lost was due to the decomposition of PCA residue [59]. AgPCA
only showed one stage of weight lost which was due to the combustion of PCA. The drug-loaded NPs
appear to be more thermally stable as compared to PCA.

From the drug release profile, burst released occur at the first 15 min indicating that some PCA
is weakly bound or adsorbed on the large surface area of the NPs [57,60]. After that, PCA that was
loaded on the NPs was released in a stable manner. Kinetics assesments suggest that the drug were
released through both diffusion and erosion controlled (non-fickian) method because the release data
can be fitted into Higuchi and Korsmeyer-Peppas models [61]. Dissolution-filling approach occurred
as PCA gradually released and diffused from the NPs that act as the carriers [62].

The IC50 result suggests that combining AgNPs with PCA was beneficial in killing the HCT116
cells. There is an improvement on the anticancer effect of AgPCA as compared to AgNPs and PCA alone.
Moreover, the loaded NPs showed a better selectivity on HCT116 cells. This result suggests that AgNPs
can be an effective nanocarrier for anticancer drug delivery. In the attempt to determine the killing
mechanism, we showed that AgPCA treatment impaired the mitochondrial function and increased the
ROS generation in HCT116 cells, which is in line with the previous finding [28]. These physiological
changes could be due to the leaching of Ag ions and the release of PCA from AgPCA which eventually
induce apoptosis or necrosis in the treated cells [28,30]. ROS-mediated oxidative stress plays important
regulatory role in cellular homeostasis. When the process is interfered by the Ag ions or PCA, cell
death occurs due to the imbalance between pro- and anti-oxidants levels [33].

This study highlights the great potential of AgNPs to be used as a non-toxic anticancer drug
delivery system. Our future works will focus on the control of the physiochemical properties of
AgNPs to suit its use for future cancer treatment. One of the strengths in nanotechnology is the
capacity to modify the NPs’ physiochemical characteristics such as size, charge, electrical properties,
shape, viscosity, and surface tension that have direct impact on their biological moiety, cytotoxicity,
and stability. In addition to the optimisation of NPs’ modifications, formulation and synthesis for
cancer treatment, there are underlying challenges to adopt NPs for clinic use [32,33]. Some of the key
challenges to address are their activity in the more stringent biological systems such as animal models,
administration method, controlled release and targeted delivery, possible resistance developed by
tumour, and cost-effectiveness from industrial and pharmaceutical perspectives [32,33].

5. Conclusions

This study proposes an environmental friendly method via the usage of Garcinia mangostana fruit
peels extract for the synthesis of AgNPs. This method fully utilises unwanted waste material to a better
use. The size and shape of the AgNPs can be easily controlled by manipulating various parameters as
reported in this study. Our results showed that the generated AgNPs are suitable to act as nanocarriers
in which the PCA could be loaded easily. The anticancer assay confirmed that the PCA-loaded AgNPs
possess a better anticancer property as compared to the NPs alone while reducing the toxicity of loaded
drug. Some of the cell death mechanisms of AgPCA on HCT116 cells include mitochondria-related
apoptosis and ROS generation. Overall, using PCA as an example, the results suggest that the biogenic
AgNPs have high potential to be utilised as an anticancer drug delivery system.
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Figure S1: A comparison of UV-vis spectrum between PCA and AgPCA. Figure S2: Drug release profile of PCA
and AgPCA at the first hour.
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