See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of dibromidobis(4-bromobenzyl) tin(IV), C₁₄H₁₂Br₄Sn

https://doi.org/10.1515/ncrs-2019-0162 Received March 3, 2019; accepted March 25, 2019; available online June 19, 2019

Abstract

C₁₄H₁₂Br₄Sn, monoclinic, *I2/a* (no. 15), a = 12.6379(2) Å, b = 4.9674(1) Å, c = 26.1845(4) Å, $\beta = 94.507(1)^{\circ}$, V = 1638.71(5) Å³, Z = 4, $R_{gt}(F) = 0.0142$, $wR_{ref}(F^2) = 0.0358$, T = 100 K.

CCDC no.: 1905383

The molecular structure of the title complex is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The melting point (uncorrected) was measured on an Mel-Temp II melting point apparatus. ¹H and ¹³{¹H}C NMR spectra were recorded in DMSO-d₆ solution on a Bruker Ascend 400 MHz NMR (Billerica, MA, USA) spectrometer.

Di(4-bromobenzyl)tin dibromide was prepared from the direct reaction of 4-bromobenzyl bromide (Merck, 0.50 g, 2.0 mmol) and metallic tin powder (Sigma-Aldrich, 0.12 g, 1.0 mmol) in toluene according to a literature procedure [5]. After refluxing for 5 h, fine white powders were observed in

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.07 \times 0.03 \times 0.02~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	23.7 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	10027, 1450, 0.031
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 1418
N(param) _{refined} :	87
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	X	у	z	U _{iso} */U _{eq}
Sn	0.250000	-0.00473(4)	0.500000	0.01254(7)
Br1	0.39552(2)	0.32357(5)	0.52646(2)	0.01689(7)
Br2	0.41779(2)	0.70829(5)	0.27602(2)	0.02498(8)
C1	0.29003(19)	-0.1656(5)	0.42709(7)	0.0202(5)
H1A	0.350663	-0.291059	0.432852	0.024*
H1B	0.228858	-0.268688	0.411326	0.024*
C2	0.31845(18)	0.0518(5)	0.39113(8)	0.0163(4)
C3	0.42172(17)	0.1525(5)	0.39318(7)	0.0188(5)
H3	0.473217	0.086032	0.418448	0.023*
C4	0.45068(18)	0.3473(5)	0.35910(8)	0.0193(5)
H4	0.521338	0.413915	0.360804	0.023*
C5	0.37503(19)	0.4434(5)	0.32252(8)	0.0179(4)
C6	0.27165(18)	0.3493(5)	0.31938(8)	0.0195(5)
H6	0.220605	0.416788	0.294006	0.023*
C7	0.24382(18)	0.1548(5)	0.35391(7)	0.0189(5)
H7	0.172856	0.090381	0.352247	0.023*

the mixture and the contents of the reaction vessel became grey. The obtained slurry was filtered after cooling and the residue was extracted with acetone/toluene. Colourless crystals suitable for crystallographic studies were obtained from the slow evaporation of the filtrate. Yield: 0.32 g (52%). M. pt: 453–455 K. ¹H NMR (DMSO-d₆, p.p.m.): δ 7.19–7.21 (d, 4H, PhH, ³J = 8.32 Hz), 7.38–7.40 (d, 4H, PhH, ³J = 8.32 Hz), 3.10 (s, 4H, Ph–CH₂). ¹³C{¹H} NMR (DMSO-d₆, p.p.m.): δ 50.8 (–CH₂), 118.1, 139.9, 132.1, 139.4 (Ph–C).

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my, Edward.Tiekink@gmail.com. https://orcid.org/0000-0003-1401-1520

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 Lee See Mun et al., published by De Gruyter. (ලා By License.

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95 - 0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Comment

Interest in diorganotin dihalido molecules similar to the title compound [6, 7] relate to the ability of the diorganotin centre to increase its coordination number *via* intra- and intermolecular $Sn \cdots X$ secondary [8] interactions. Besides structural consequences, the formation of intramolecular $Sn \cdots X$ interactions has implications for the stability and function of organotin species investigated as potential anti-tumour agents [9].

The molecule is illustrated in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) 1/2 - x, y, 1 - z). The title complex has crystallographic two-fold symmetry with the tin atom lying on the two-fold axis. The tin atom is tetrahedrally coordinated by two bromido atoms [Sn-Br1 = 2.5143(2) Å]and two methylene-carbon ligands [2.166(2) Å] derived from the 4-bromobenzyl substituents. The resulting Br₂C₂ donor set exhibits significant deviations from the regular tetrahedral geometry with the angles correlating with steric effects. Thus, the narrowest angle of 99.125(12)° is subtended by the bromido atoms and the widest angle of 136.70(12)° by the methylene-carbon atoms. From symmetry, the phenyl rings are orientated towards the same side of the molecule but, are splayed as seen in the dihedral angle between them of 88.7(5)°.

In the molecular packing, a three-dimensional architecture is sustained by a combination of side-on $C-Br\cdots\pi$, secondary $Sn\cdots Br$ interactions and $Br\cdots Br$ halogen bonding. Globally, molecules assemble into columns parallel to the *b*-axis, with connections between them being of the type $C-Br\cdots\pi$ [C5-Br2···Cg(C2-C7)ⁱⁱ: Br2···Cg(C2-C7)ⁱⁱ = 3.5754(10) Å with angle at Br2 = 92.65(7)° for symmetry operation (ii) x, 1+y, z] and $Sn\cdots Br$ [Sn···Brⁱⁱ = 3.8464(3) Å]. Interactions between columns to form layers in the *ab*-plane involve the coordinated bromido ligands [Br1···Br1ⁱⁱⁱ = 3.5414(4) Å for (iii): 1 - x, 1 - y, 1 - z].

The layers are connected along the *c*-axis by bromo \cdots bromo interactions [Br2 \cdots Br2^{iv} = 3.5761(4) Å for (iv): 1 - x, -1/2 + y, 1/2 - z].

The crystal structure of the isostructural all-chloro derivative of the title compound is known [10]. The Cl—Sn—Cl and C—Sn—C angles in the literature known compound are 98.68(3) and 136.15(12)°, respectively, both marginally smaller than in the present structure.

Acknowledgements: Sunway University is thanked for supporting studies in organotin chemistry.

References

- 1. Agilent Technologies. CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, U.S.A. (2017).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Crystallogr. 45 (2012) 849–854.
- Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. di- and tribenzyltin chlorides. J. Am. Chem. Soc. 83 (1961) 538–541.
- Buntine, M. A.; Kosovel, F. J.; Tiekink, E. R. T.: Supramolecular Sn···· Cl associations in diorganotin dichlorides and their influence on molecular geometry as studied by ab initio molecular orbital calculations. CrystEngComm 5 (2003) 331–336.
- Vargas-Pineda, D. G.; Guardado, T.; Cervantes-Lee, F.; Metta-Magana, A. J.; Pannell, K. H.: Intramolecular chalcogen-tin interactions in [(*o*-MeEC₆H₄)CH₂]₂SnPh_{2-n}Cl_n (E = S, O, CH₂; n = 0, 1, 2) and intermolecular chlorine-tin interactions in the *meta* and *para*-methoxy isomers. Inorg. Chem. 49 (2010) 960–968.
- Tiekink, E. R. T.: Supramolecular assembly based on emerging intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 209–228.
- Holloway, L. N.; Pannell, K. H.; Whalen, M. M.: Effects of a series of triorganotins on ATP levels in human natural killer cells. Environ. Toxicol. Pharmacol. 25 (2008) 43–50.
- Kuang, D.-Z.; Feng, Y.-L.: Synthesis and crystal structure of bis(*p*-chlorobenzyl)tin dichloride. Chin. J. Inorg. Chem. 16 (2000) 603–606.