Sang Loon Tan and Edward R.T. Tiekink*

Crystal structure of the co-crystal 4-[(4-carboxyphenyl)disulfanyl]benzoic acid–(1*E*,4*E*)-1-*N*,4-*N*-bis(pyridin-4-ylmethylidene)cyclohexane-1,4-diamine (1/1), $C_{14}H_{10}O_4S_2 \cdot C_{18}H_{20}N_4$

https://doi.org/10.1515/ncrs-2019-0488 Received July 11, 2019; accepted August 5, 2019; available online August 17, 2019

Abstract

C₃₂H₃₀N₄O₄S₂, monoclinic, *I*2/*a* (no. 15), *a* = 21.2034(7) Å, *b* = 5.0614(2) Å, *c* = 27.5987(12) Å, β = 105.991(4)°, *V* = 2847.3(2) Å³, *Z* = 4, *R*_{gt}(*F*) = 0.0431, *wR*_{ref}(*F*²) = 0.1246, *T* = 100(2) K.

CCDC no.: 1945351

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title co-crystal was prepared through physical mixing of 4-mercaptobenzoic acid (Acros, Geel, Antwerp, Belgium) (0.154 g, 1 mmol) and N,N'-bis((pyridine-4-yl)methylene)-cyclohexane-1,4- diamine [5] (0.292 g, 1 mmol) in a 1:1 molar

Table 1: Data collection and handling.

Crystal:	Colourless prism	
Size:	0.16 imes 0.10 imes 0.06 mm	
Wavelength:	Cu Kα radiation (1.54184 Å)	
μ:	2.07 mm^{-1}	
Diffractometer, scan mode:	XtaLAB Synergy, ω	
θ_{\max} , completeness:	76.9°, >99%	
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	34319, 2996, 0.063	
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 2795	
N(param) _{refined} :	193	
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],	
	WinGX/ORTEP [4]	

ratio. Colourless crystals were obtained three days after crystallization by the layering of benzene (2 mL) onto an equivalent volume of DMSO containing the dissolved mixture. **M.pt**: 438–439 K. **IR** (ATR, cm⁻¹): 3060(*w*) v(N–H), 2940–2826(*m*) v(C–H), 1675(*m*) v(C=O), 1556(*m*) v(C=N), 1321(*m*) v(C–N), 815(s) δ (C=C).

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The O-bound H atoms were located in difference Fourier maps but were refined with a distance restraint of O– H = 0.84 ± 0.01 Å, and with $U_{\rm iso}({\rm H})$ set to $1.5U_{\rm eq}({\rm O})$.

Comment

The isolation and crystallographic characterization of the title co-crystal is a rare example formed by one of the isomeric Schiff bases, *N*,*N'*-bis((pyridine-n-yl)methylene)cyclohexane-1,4-diamine, for n = 2, 3 and 4 [5]. The co-crystal co-former is disulfide 4-[(4-carboxyphenyl)disulfanyl]benzoic acid (4-DTBA), whose crystal structure has been reported in the literature [6]. The observation of n-DTBA, or its derived di-anion, arises from the oxidation of the n-mercaptobenzene, for n = 2, 3 and 4, starting material, as has been commented upon previously [7–9]; the species with a single sulfur bridge has also been found [10]. Up to the present time, a characteristic of the aforementioned Schiff bases is their breakdown during co-crystallization [11–14]. Often, this results in isolation

This work is licensed under the Creative Commons Attribution 4.0 Public

Unauthenticated Download Date | 10/10/19 2:17 AM

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Sang Loon Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 Sang Loon Tan et al., published by De Gruyter. 🕼 שיע License.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	X	у	z	U _{iso} */U _{eq}
S1	0.70397(2)	1.25411(8)	0.47699(2)	0.02786(16)
01	0.61712(6)	0.3255(3)	0.30000(5)	0.0291(3)
H10	0.6164(12)	0.211(4)	0.2777(7)	0.044*
02	0.72569(6)	0.2874(3)	0.31164(5)	0.0329(3)
N1	0.60383(7)	-0.4412(3)	0.73461(5)	0.0272(3)
N2	0.52646(7)	0.1957(3)	0.59005(6)	0.0306(3)
C1	0.70173(8)	0.9950(3)	0.43315(6)	0.0242(3)
C2	0.63918(8)	0.9125(3)	0.40682(6)	0.0259(3)
H2	0.601792	0.989443	0.413862	0.031*
C3	0.63136(8)	0.7185(3)	0.37037(7)	0.0263(4)
H3	0.588525	0.663798	0.352179	0.032*
C4	0.68600(8)	0.6026(3)	0.36015(6)	0.0237(3)
C5	0.74839(8)	0.6844(4)	0.38727(7)	0.0284(4)
H5	0.785844	0.604956	0.380784	0.034*
C6	0.75666(8)	0.8798(4)	0.42354(7)	0.0291(4)
H6	0.799465	0.934929	0.441734	0.035*
C7	0.67887(8)	0.3894(3)	0.32177(6)	0.0250(3)
C8	0.54347(8)	-0.3588(4)	0.70955(7)	0.0278(4)
H8	0.506677	-0.441202	0.716538	0.033*
C9	0.53257(8)	-0.1595(4)	0.67407(7)	0.0277(4)
H9	0.489132	-0.109413	0.656416	0.033*
C10	0.58639(8)	-0.0326(3)	0.66453(6)	0.0263(4)
C11	0.64912(8)	-0.1116(4)	0.69167(7)	0.0296(4)
H11	0.686848	-0.024814	0.687188	0.035*
C12	0.65532(8)	-0.3200(4)	0.72544(7)	0.0301(4)
H12	0.698118	-0.379035	0.742789	0.036*
C13	0.57796(9)	0.1793(4)	0.62631(7)	0.0297(4)
H13	0.611930	0.305537	0.629081	0.036*
C14	0.52312(9)	0.4082(4)	0.55304(7)	0.0319(4)
H14	0.546158	0.568047	0.570713	0.038*
C15	0.55623(10)	0.3195(4)	0.51338(8)	0.0380(5)
H15A	0.536724	0.150136	0.498537	0.046*
H15B	0.603466	0.289115	0.529606	0.046*
C16	0.54863(9)	0.5243(4)	0.47160(8)	0.0370(4)
H16A	0.568568	0.455127	0.445665	0.044*
H16B	0.572529	0.687005	0.485848	0.044*

of cyclohexane-1,4-diammonium di-cation [11–13]. Intriguingly, the original 2-pyridyl isomer of the Schiff base has also been converted to a 2-(4-ammoniocyclohexyl)-3-(pyridin-2yl)imidazo[1,5-*a*]pyridin-2-ylium di-cation [14]. Herein, as a continuation of studies in this area and employing the same general procedure as previously, perhaps unexpectedly, the anticipated 1:1 co-crystal was formed from 4-mercaptobenzoic acid and the n = 4 isomer of the Schiff base.

The molecular structures of the two components of the title crystal are shown in the figure (70% probability displacement ellipsoids with unlabelled atoms for the 4-DTBA molecule being related by 3/2 - x, y, 1 - z and for the Schiff base, by 1 - x, 1 - y, 1 - z). The 4-DTBA molecule exhibits crystallographic 2-fold asymmetry. The disparity in the C7–O1, O2 bond lengths [1.321(2) and 1.218(2) Å] confirm

the presence of the acid. The carboxyl group is co-planar with the phenyl ring to which it is attached, as seen in the dihedral angle between the two planes of 1.38(8)°. The characteristic orthogonal relationship between the phenyl rings is evidenced by the dihedral angle of 88.41(41)° between them, giving rise to a twisted, U-shaped molecule. The Schiff base is disposed about a center of inversion, as found in the free Schiff base [5]. However, a difference between the molecules is apparent in that in the free form [5], the $C=C(H)C_5H_4N$ residue is almost orthogonal to the best plane through the cyclohexyl ring (which adopts a chair conformation in both structures) as seen in the dihedral angle of 86.01(5)°. This compares with the comparable angle in the title co-crystal of 38.93(3)° which arises from a twist about the C10-C13 bond, with the C9-C10-C13-N2 torsion angle being $-24.0(3)^{\circ}$.

The key hydrogen bonding interactions in the crystal are of the type hydroxy-O-H···N(pyridyl) [O1-H10···N1ⁱ: $H10 \cdots N1^{i} = 1.78(2)$ Å, $O1 \cdots N1^{i} = 2.615(2)$ Å with angle at H10 = 170(2)° for symmetry operation (i) x, -1/2 - y, -1/2+z]. The hydrogen bonding interactions lead to the formation of a supramolecular chain along the c axis direction, having a zigzag topology, being propagated by glide symmetry. The repeat distance of 35.1 Å is rather long as, owing to the kink in the 4-DTBA molecule, the edges are defined by a full Schiff base molecule and two half 4-DTBA molecules; the pitch is 53.4 Å. The 4-DTBA molecules stack along the b axis and are connected into a column by side-on $C=O\cdots\pi(phenyl)$ interactions $[C7-O2\cdots Cg(C1-C6)^{ii}]$: $02 \cdot \cdot \cdot Cg(C1 - C6)^{ii} = 3.6026(16) \text{ Å},$ $C7 \cdots Cg(C1 - C6)^{ii} = 3.6015(17)$ Å with angle at $O2 = 80.22(10)^{\circ}$ for (ii) x, 1+y, z]. The layers thus formed are connected laterally to form a three-dimensional architecture by pyridyl- $C-H\cdots O(\text{carbonyl})$ interactions [C11–H11 \cdots O2ⁱⁱⁱ: $H11 \cdots O2^{iii} = 2.43$ Å, $C11 \cdots O2^{iii} = 3.357(2)$ Å with angle at H11 = 165° for (iii) 3/2 - x, y, 1 - z].

Given the nature of weak interactions sustaining the supramolecular chains into a three-dimensional architecture, the Hirshfeld surfaces as well as the full and delineated twodimensional fingerprint plots were calculated for the individual (symmetry expanded) co-crystal co-formers, using literature procedures [15] and Crystal Explorer 17 [16], in order to determine the most important contacts in the molecular packing.

Eleven different contacts were revealed in the analysis of the 4-DTBA molecule with the prominent contacts being H····H [39.4%] followed by O····H/H···O [14.4%], S···C/C···S [10.0%] and C···H/H···C [9.2%]. Significant contributions are also made by N····H/H···N [6.7%], S···H/H···S [6.6%], O···C/C···O [6.5%] and C···C [6.0%] contacts. Fractions of a percentage contributions are made by $O \cdots N/N \cdots O$ [0.6%], $N \cdots C/C \cdots N$ [0.4%] and $O \cdots O$ [0.1%]. Some significant differences are noted in the contributors to the surface of the Schiff base. Reflecting the change in chemical composition, contributions from $H \cdots H$ [52.0%], $C \cdots H/H \cdots C$ [17.4%] and $N \cdots H/H \cdots N$ [12.3%] contacts have increased significantly. Complementing this observation are the decreases in the contributions from $O \cdots H/H \cdots O$ [9.6%] $S \cdots H/H \cdots S$ [3.1%], $O \cdots C/C \cdots O$ [1.0%] and $C \cdots C$ [2.5%]. Of the minor surface contacts, contributions from $O \cdots N/N \cdots O$ [0.6%] contacts remain the same, those from $N \cdots C/C \cdots N$ [1.6%] increase while there are no $O \cdots O$ contacts for the Schiff base molecule.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- Rigaku Oxford Diffraction. CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- 5. Lai, C. S.; Mohr, F.; Tiekink, E. R. T.: The importance of C– H \cdots N, C-H \cdots π and π \cdots π interactions in the crystal packing of the isomeric N^1, N^4 -bis((pyridine-*n*-yl)methylene) cyclohexane-1,4-diamines, n = 2, 3 and 4. CrystEngComm **8** (2006) 909–915.
- Rowland, C. E.; Belai, N.; Knope, K. E.; Cahill, C. L.: Hydrothermal synthesis of disulfide-containing uranyl compounds: in situ ligand synthesis versus direct assembly. Cryst. Growth Des. 10 (2010) 1390–1398.
- Broker, G. A.; Tiekink, E. R. T.: Co-crystal formation between 2,2'-dithiodibenzoic acid and each of 4,4'-bipyridine,

trans-1,2-bis(4-pyridyl)ethene and 1,2-bis(4-pyridyl)ethane. CrystEngComm **9** (2007) 1096–1109.

- Broker, G. A.; Bettens, R. P. A.; Tiekink, E. R. T.: Cocrystallisation of 2,2'-dithiodibenzoic acid with the isomeric *n*-pyridinealdazines, n = 2, 3 and 4: supramolecular polymers and the influence of steric factors upon aggregation patterns. CrystEngComm **10** (2008) 879–887.
- 9. Rowland, C. E.; Cantos, P. M.; Toby, B. H.; Frisch, M.; Deschamps, J. R.; Cahill, C. L.: Controlling disulfide bond formation and crystal growth from 2-mercaptobenzoic acid. Cryst. Growth Des. **11** (2011) 1370–1374.
- Tan, S. L.; Tiekink, E. R. T.: A 1:2 co-crystal of 2,2'-thiodibenzoic acid and triphenylphosphane oxide: crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. E74 (2018) 1764–1771.
- Tan, S. L.; Tiekink, E. R. T.: Crystal structure of hemikis (cyclohexane-1,4-diammonium) (pyridine-2-carboxylate), [C₆H₁₆N₂]_{0.5}[C₆H₄NO₂]. Z. Kristallogr. NCS 234 (2019) 749–751.
- Tan, S. L.; Tiekink, E. R. T.: Crystal structure of cyclohexane-1,4-diammonium 2-[(2-carboxylatophenyl)disulfanyl] benzoate — dimethylformamide — monohydrate (1/1/1), [C₆H₁₆N₂][C₁₄H₈O₄S₂] · C₃H₇NO·H₂O. Z. Kristallogr. NCS 234 (2019) 903–905.
- Tan, S. L.; Tiekink, E. R. T.: Crystal structure of bis(cyclohexane-1,4-diammonium) 4-[(4-carboxylatophenyl)disulfanyl] benzoate dimethylsulphoxide hydrate (1/1/1/1), [C₆H₁₆N₂]²⁺[C₁₄H₈O₄S₂]⁻²·C₂H₆OS·H₂O. Z. Kristallogr. NCS 234 (2019) doi: 10.1515/ncrs-2019-0487.
- Tan, S. L.; Tiekink, E. R. T.: Crystal structure of 2-(4ammoniocyclohexyl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2ium 2-[(2-carboxylatophenyl)disulfanyl]benzoate dihydrate, [C₁₈H₂₂N₄][C₁₄H₈O₄S₂]·2H₂O. Z. Kristallogr. NCS 234 (2019) 797–799.
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.
- Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).