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The crystal and molecular structures of the title triorganotin dithiocarbamate,

[Sn(C6H5)3(C7H14NS2)], are described. The molecular geometry about the metal

atom is highly distorted being based on a C3S tetrahedron as the dithio-

carbamate ligand is asymmetrically chelating to the tin centre. The close

approach of the second thione-S atom [Sn� � �S = 2.9264 (4) Å] is largely

responsible for the distortion. The molecular packing is almost devoid of

directional interactions with only weak phenyl-C—H� � �C(phenyl) interactions,

leading to centrosymmetric dimeric aggregates, being noted. An analysis of the

calculated Hirshfeld surface points to the significance of H� � �H contacts, which

contribute 66.6% of all contacts to the surface, with C� � �H/H� � �C [26.8%] and

S� � �H/H� � �H [6.6%] contacts making up the balance.

1. Chemical context

Organotin(IV) compounds have long been investigated as

potential anti-cancer agents (Gielen & Tiekink, 2005) and

studies in this area continue. Further, organotin compounds

have received much attention owing to their potential ther-

apeutic potential as anti-fungal, anti-bacterial, anti-malarial

and schizonticidal agents (Khan et al., 2014). Metal dithio-

carbamates have also encouraged much interest in the context

of chemotherapeutic agents (Hogarth, 2012) and these include

organotin(IV) dithiocarbamate compounds (Tiekink, 2008;

Adeyemi & Onwudiwe, 2018). In view of the wide-range of

applications/potential of organotin(IV) dithiocarbamate

compounds and in continuation of on-going studies in this

area (Khan et al., 2015; Mohamad et al. 2016, 2017, 2018), the

title compound, Ph3Sn[S2CN(i-Pr)2], (I), was synthesized and

characterized spectroscopically. Herein, the crystal and mol-

ecular structures of (I) are described along with a detailed

analysis of the molecular packing via the calculated Hirshfeld

surfaces and computational chemistry study.
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2. Structural commentary

The tin atom in (I), Fig. 1, is coordinated by an asymmetrically

bound dithiocarbamate ligand and three ipso-carbon atoms of

the phenyl groups (Table 1). The disparity in the Sn—S

separations, i.e. �(Sn—S) = [(Sn—Sl) � (Sn—Ss)] = 0.45 Å

(l = long, s = short), is rather great suggesting that the Sn� � �S2

interaction is weak. This is supported in the pattern of C—S

bond lengths with that involving the more tightly bound S1

atom being nearly 0.06 Å longer than the equivalent bond

with the weakly bound S2 atom. Despite this, a clear influence

of the S2 atom is noted on the Sn—C bond lengths with the

Sn—C31 bond length being significantly longer than the other

Sn—C bonds, Table 1. The S2—Sn—C31 bond angle is

158.41 (4)� and is suggestive of a trans-influence exerted by

the S2 atom; there is no other trans angle about the tin atom. If

the coordination geometry is considered as tetrahedral, the

range of tetrahedral angles is 93.24 (4)�, for S1—Sn—C31, to

119.87 (6)�, for C11—Sn—C21. The range of angles assuming

a five-coordinate, C3S2, geometry is 65.260 (11)�, for the S1—

Sn—S2 chelate angle to the aforementioned 158.41 (4)�. A

descriptor for assigning coordination geometries to five-

coordinate species is � (Addison et al., 1984). In the case of (I),

this computes to 0.64, which indicates a geometry somewhat

closer to an ideal trigonal bipyramid (� = 1.0) than to an ideal

square pyramid (� = 0.0). Also included in Table 1 are the C—

N bond lengths, which show C1—N1 to be significantly shorter

than the C2—N1 and C5—N1 bond lengths, an observation

consistent with a significant contribution of the 2�S2C N+(i-

Pr)2 canonical form to the overall electronic structure of the

dithiocarbamate ligand.

3. Supramolecular features

The geometric parameters characterizing the identified inter-

molecular interaction operating in the crystal of (I) are

collated in Table 2. A phenyl-C—H� � �C(phenyl) contact less

than the sum of the sum of the Waals radii (Spek, 2009) is

noted to occur between centrosymmetrically related mol-

ecules, Fig. 2(a). This is an example of a localized C—H� � ��
contact whereby the hydrogen atom directed towards a single

carbon atom of the ring as opposed to a delocalized inter-

action where the hydrogen atom (or halide atom or lone-pair

of electrons) is directed towards the centroid of the ring

(Schollmeyer et al., 2008; Tiekink, 2017).
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Table 1
Selected bond lengths (Å).

Sn—S1 2.4792 (4) C1—S1 1.7587 (15)
Sn—S2 2.9264 (4) C1—S2 1.7006 (16)
Sn—C11 2.1446 (14) C1—N1 1.336 (2)
Sn—C21 2.1349 (15) C5—N1 1.495 (2)
Sn—C31 2.1754 (15) C2—N1 1.497 (2)

Table 2
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C34—H34� � �C24i 0.95 2.82 3.757 (3) 171

Symmetry code: (i) �x þ 1;�y;�z.

Figure 2
Molecular packing in the crystal of (I): (a) supramolecular dimer
sustained by localized phenyl-C—H� � �C(phenyl) interactions shown as
purple dashed lines and (b) a view of the unit-cell contents in projection
down the a axis. One column of dimeric aggregates is highlighted in
space-filling mode.

Figure 1
The molecular structure of (I) showing the atom-labelling scheme and
displacement ellipsoids at the 70% probability level. The long Sn1� � �S2
contact is indicated by a double-dashed line.



4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I) were performed

employing Crystal Explorer 17 (Turner et al., 2017) and

recently published protocols (Tan et al., 2019). In the absence

of classical hydrogen bonds, the influence of the localized C—

H� � �� interaction, Table 2, as well as interatomic H� � �H and

C� � �H/H� � �C contacts, Table 3, upon the molecular packing

are evident as the diminutive-red spots near the participating

carbon and hydrogen atoms on the Hirshfeld surfaces mapped

over dnorm in Fig. 3. It is also noted that with the exception of

the methyl-H7A atom, all of the specified interatomic contacts

only involve the carbon and hydrogen atoms of the coordin-

ated phenyl rings, Table 3. On the Hirshfeld surface mapped

over electrostatic potential in Fig. 4, the light-blue and faint-

red regions, corresponding to positive and negative electro-

static potential, respectively, occur about the di-iso-propyl and

triphenyltin groups, respectively.

As reported recently (Pinto et al., 2019), in addition to

analysing the nature and strength of intermolecular inter-

actions among molecules, the analyses of Hirshfeld surfaces

can also provide useful insight into metal–ligand/donor atom

interactions in coordination compounds. Thus, the distance

from the surface to the nearest external (de) and internal (di)

nuclei, the shape-index (S) and the curvedness (C) can also be

plotted. Accordingly, Fig. 5 illustrates the Hirshfeld surfaces

for the tin atom coordinated by dithiocarbamate ligand as well

as by the three phenyl groups. The close proximity of the

dithiocarbamate-S1 and phenyl-C11, C21 and C31 atoms to

the tin centre are characterized as bright-red regions

perpendicular to bond directions on the Hirshfeld surfaces

mapped over de, Fig. 5(a), and dnorm, Fig. 5(b), whereas the

comparatively weak Sn—S2 interaction appears as the faint-

red region. The longer Sn—C31 bond compared to other two

Sn—C bonds, Table 1, is also characterized from these

Hirshfeld surfaces through the curvature of the red region.

The Sn—S1 and Sn—C bonds result in the large red regions on

the shape-index mapping in Fig. 5(c) compared to a small red

region for the Sn—S2 bond. On the Hirshfeld surfaces

mapped over curvedness in Fig. 5(d), the strength of the tin–

ligand bonds are characterized as the yellow areas separated

by green regions. The coordination bonds for tin are also

rationalized in the fingerprint plot taking into account only the

Hirshfeld surface about the metal atom, Fig. 6. The distribu-

tion of green points having upper short spike at de + di�2.4 Å

and the lower, long red spike at de + di�2.1 Å are the result of

the Sn—S and Sn—C bonds, respectively. This asymmetric

distribution of points about the diagonal lacking homogeneity

in colouration is due to the distorted coordination geometry

about the tin atom.
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Table 3
Summary of short interatomic contacts (Å) in (I).

The interatomic distances are calculated in Crystal Explorer 17 (Turner et al.,
2017) whereby the X—H bond lengths are adjusted to their neutron values.

Contact Distance Symmetry operation

H7A� � �H12 2.09 1 � x, 1 � y, �z
H13� � �H26 2.26 1 + x, y, z
C12� � �H36 2.65 1 � x, 1 � y, �z
C13� � �H26 2.68 1 + x, y, z
C16� � �H23 2.65 1 � x, �y, 1 � z
C24� � �H34 2.68 1 � x, �y � z

Figure 3
Two views of Hirshfeld surface for (I) mapped over dnorm in the range
�0.085 to +1.355 (arbitrary units), highlighting short interatomic H� � �H
and C� � �H/H� � �C contacts as diminutive red spots near the respective
atoms.

Figure 4
Two views of Hirshfeld surface mapped over the electrostatic potential
(the red and blue regions represent negative and positive electrostatic
potentials, respectively) in the range �0.032 to +0.035 atomic units.

Figure 5
The Hirshfeld surfaces of the tin centre in (I) highlighting the
coordination by the dithiocarbamate ligand (left-hand images) and the
phenyl rings (right-hand images) mapped over (a) the distance, de,
external to the surface in the range �0.981 to 2.436 Å, (b) dnorm in the
range �0.890 to +1.135 Å, (c) the shape-index (S) from �1.0 to +1.0
(arbitrary units) and (d) curvedness (C) from �4.0 to +0.4 (arbitrary
units).



It is clear from the the calculation of the overall two-

dimensional fingerprint plot for (I), Fig. 7(a), that the plot is

asymmetric about the (de, di) diagonal in the longer distance

regions and have contributions only from the interatomic

contacts involving carbon, hydrogen and sulfur atoms, Table 4.

The two-dimensional fingerprint plots delineated into H� � �H,

C� � �H/H� � �C, C� � �C and S� � �H/H� � �S contacts are shown in

Fig. 7(b)–(d), respectively. In the fingerprint plot delineated

into H� � �H contacts in Fig. 7(b), the presence of the short

interatomic H� � �H interaction involving the methyl-H7A and

phenyl-H12 atoms is evident as the pair of short overlapping

peaks at de + di�2.1 Å with the other short interatomic H� � �H

contact (Table 3) merged within the plot. The intermolecular

C—H� � �C interactions describing the localized C—H� � ��
contacts are evidenced by a pronounced pair of characteristic

wings around (de, di) �(1.2 Å, 1.8Å) and �(1.8 Å, 1.2 Å) in

the fingerprint plot delineated into C� � �H/H� � �C contacts

shown in Fig. 7(c). The other short interatomic C� � �H contacts

summarized in Table 3 appear as the pair of forceps-like tips at

de + di �2.7 Å. The fingerprint plot delineated into S� � �H/

H� � �S contacts in Fig. 7(d) indicate that sulfur atoms are

nearly at van der Waals separation from the symmetry-related

hydrogen atoms.

5. Computational chemistry

The pairwise interaction energies between the molecules

within the crystal were calculated using Crystal Explorer 17

(Turner et al., 2017) and summing up the four energy

components: electrostatic (Eele), polarization (Epol), disper-

sion (Edis) and exchange-repulsion (Erep). The energies were

obtained using the wave function calculated at the HF/STO-

3G level of theory. The strength and the nature of inter-

molecular interactions in terms of their energies are

summarized in Table 5. An analysis of these reveals that the

dispersion energy component makes the greatest contribution
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Table 5
Summary of interaction energies (kJ mol�1) calculated for (I).

Contact R (Å) Eele Epol Edis Erep Etot

H7A� � �H12i + 6.30
H36� � �C12i

�17.5 �7.0 �112.7 68.0 �68.8
H13� � �H26ii + 9.76
C13� � �H26ii

�8.7 �2.0 �31.6 18.0 �24.0
C16� � �H23iii 9.46 �12.9 �2.0 �41.9 29.5 �28.2
C24� � �H34iv 10.62 �11.0 �2.8 �33.8 21.6 �26.0

Notes: Symmetry operations: (i) 1� x, 1 � y,�z; (ii) 1 + x, y, z; (iii) 1� x,�y, 1� z; (iv)
1 � x, �y, �z.

Table 4
Percentage contributions of interatomic contacts to the Hirshfeld surface
for (I).

Contact Percentage contribution

H� � �H 66.5
C� � �H/H� � �C 26.8
S� � �H/H� � �S 6.6
C� � �S/S� � �C 0.1

Figure 6
The fingerprint plot taking into account only the Hirshfeld surface about
the tin atom.

Figure 7
(a) A comparison of the full two-dimensional fingerprint plot for (I) and those delineated into (b) H� � �H, (c) C� � �H/H� � �C and (d) S� � �H/H� � �S contacts.



to the energies in the absence of classical hydrogen (electro-

static) bonds. Among the short interatomic contacts listed in

Table 5, the intermolecular phenyl-C—H36� � �C12 contact

combined with the methyl-H7A� � �H12(phenyl) interaction,

occurring between the same pair of symmetry-related mol-

ecules, gives rise to the maximum total energy of interaction,

compared to the other interactions, which have almost the

same energy values.

The graphical representation of the magnitudes of inter-

molecular energies in Fig. 8, i.e. energy frameworks, relies on a

red, green and blue colour code scheme, reflecting the Eele,

Edisp and Etot components, respectively. For the direct

comparison of magnitudes of interaction energies, their

magnitudes were adjusted to same scale factor of 30 with a cut-

off value of 3 kJ mol�1 within 2 � 2 � 2 unit cells. It is clear

from Fig. 8 that the green cylinders joining the centroids of

molecular pairs highlighting the dispersion components make

a significant contribution to the supramolecular architecture in

the crystal.

6. Database survey

As indicated in a recent report (Mohamad et al., 2018), there

are nearly 50 crystal structures available for molecules of the

general formula Ph3Sn(S2CNRR0) and, with a number of these

having multiple molecules in the asymmetric unit, there are

almost 60 independent molecules. These conform to the same

structural motif. An analysis of the key geometric parameters

defining the mode of coordination of the dithiocarbamate

ligands showed that there were no systematic variations that

could be correlated with the nature of the dithiocarbamate

ligand, i.e. R/R0 substituents. This observation is borne out by

DFT calculations on different organotin systems that proved

the influence of molecular packing on (non-systematic)

geometric parameters, including metal–sulfur/halide bonds

(Buntine et al., 1998a,b, 1999). In terms of Ph3Sn(S2CNRR0),

the mean Sn—Ss bond length is 2.47 Å (standard deviation =

0.013 Å) and the average Sn—Sl bond length is 3.04 Å

(0.070 Å). The Sn—Ss and Sn—Sl bond lengths in (I) both fall

within 2� of their respective means.

The homogeneity in the molecular structures of

Ph3Sn(S2CNRR0) is quite remarkable. Structural diversity is

well-established for the organotin dithiocarbamates (Tiekink,

2008; Muthalib et al., 2014) such as for molecules of the

general formula R002Sn(S2CNRR0)2, for which four distinct

structural motifs are known (Zaldi et al., 2017). Also, the

behaviour of triphenyltin dithiocarbamates contrasts the

analogous chemistry of triphenyltin carboxylates (Tiekink,

1991). These are often monomeric (e.g. Basu Baul et al., 2001),

as for (I), but, polymeric examples are known (e.g. Willem et

al., 1997; Smyth & Tiekink, 2000). The polymeric structures

occur when the carboxylate ligands are bidentate bridging,

leading to trans-C3O2 trigonal–bipyramidal coordination

geometries for the tin atoms. This fundamental difference in

structural chemistry arises as a result of the significant

contribution of the 2�S2C N+RR0 canonical form to the

electronic structure of the dithiocarbamate anion, as discussed
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Figure 8
The energy frameworks calculated for (I) viewed down the c-axis
direction showing the (a) electrostatic potential force, (b) dispersion
force and (c) total energy. The energy frameworks were adjusted to the
same scale factor of 30 with a cut-off value of 3 kJ mol�1 within 2� 2� 2
unit cells.



above. The formal negative charge on each sulfur atom makes

this ligand a very efficient chelator which effectively reduces

the Lewis acidity of the tin centre. Far from being a curiosity,

such behaviour, i.e. dithiocarbamate ligands reducing the

Lewis acidity of metal centres, when compared to related

xanthate (�S2COR) and dithiophopshate [(�S2P(OR)2]

ligands, leads to stark differences in coordination propensities

in zinc-triad element 1,1-dithiolate compounds, as has been

reviewed recently (Tiekink, 2018a,b).

7. Synthesis and crystallization

All chemicals and solvents were used as purchased without

purification. The melting point was determined using an

automated melting point apparatus (MPA 120 EZ-Melt).

Carbon, hydrogen, nitrogen and sulfur analyses were

performed on a Leco CHNS-932 Elemental Analyzer.

Di-iso-propylamine (Aldrich; 1.41 ml, 10 mmol) dissolved

in ethanol (30 ml) was stirred under ice-bath conditions at

277 K for 20 mins. A 25% ammonia solution (1–2 ml) was

added to provide basic conditions. Then, a cold ethanolic

solution of carbon disulfide (0.60 ml, 10 mmol) was added

dropwise into the solution followed by stirring for 2 h. After

that, triphenyltin(IV) chloride (Merck; 3.85 g, 10 mmol)

dissolved in ethanol (20–30 ml) was added dropwise into the

solution followed by further stirring for 2 h. The precipitate

that formed was filtered and washed a few times with cold

ethanol to remove impurities. Finally, the colourless precipi-

tate was dried in a desiccator. Recrystallization was carried

out by dissolving the compound in a chloroform and ethanol

mixture (1:1 v/v). This solution was allowed to slowly evapo-

rate at room temperature yielding colourless slabs of (I).

Yield: 47%, m. p.: 437.8–440.2 K. Elemental analysis: Calcu-

lated (%): C 57.07, H 5.51, N 2.66, S 12.19. Found (%): C 57.39,

H 5.31, N 2.48, S 11.26.

8. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 6. Carbon-bound H atoms were

placed in calculated positions (C—H = 0.95–1.00 Å) and were

included in the refinement in the riding model approximation,

with Uiso(H) set to 1.2–1.5Ueq(C).
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Diffractometer Rigaku XtaLAB Synergy Dualflex

AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku

OD, 2018)
Tmin, Tmax 0.840, 1.000
No. of measured, independent and

observed [I > 2�(I)] reflections
28219, 4248, 4231

Rint 0.022
(sin 	/
)max (Å�1) 0.597

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.015, 0.040, 1.00
No. of reflections 4248
No. of parameters 266
H-atom treatment H-atom parameters constrained
��max, ��min (e Å�3) 0.36, �0.44

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2015a),
SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND
(Brandenburg, 2006) and publCIF (Westrip, 2010).
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(N,N′-Diisopropyldithiocarbamato)triphenyltin(IV): crystal structure, Hirshfeld 

surface analysis and computational study

Farah Natasha Haezam, Normah Awang, Nurul Farahana Kamaludin, Mukesh M. Jotani and 

Edward R. T. Tiekink

Computing details 

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: 

CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to 

refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and 

DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(N,N′-Diisopropyldithiocarbamato)triphenyltin(IV) 

Crystal data 

[Sn(C6H5)3(C7H14NS2)]
Mr = 526.30
Triclinic, P1
a = 9.7572 (1) Å
b = 11.7030 (2) Å
c = 11.7602 (2) Å
α = 74.419 (1)°
β = 80.114 (1)°
γ = 67.285 (2)°
V = 1189.71 (4) Å3

Z = 2
F(000) = 536
Dx = 1.469 Mg m−3

Cu Kα radiation, λ = 1.54184 Å
Cell parameters from 24601 reflections
θ = 3.9–76.3°
µ = 10.25 mm−1

T = 100 K
Prism, colourless
0.12 × 0.11 × 0.08 mm

Data collection 

Rigaku XtaLAB Synergy Dualflex AtlasS2 
diffractometer

Detector resolution: 5.2558 pixels mm-1

ω scans
Absorption correction: gaussian 

(CrysAlis PRO; Rigaku OD, 2018)
Tmin = 0.840, Tmax = 1.000
28219 measured reflections

4248 independent reflections
4231 reflections with I > 2σ(I)
Rint = 0.022
θmax = 67.1°, θmin = 3.9°
h = −11→11
k = −13→13
l = −13→14

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.015
wR(F2) = 0.040
S = 1.00
4248 reflections
266 parameters
0 restraints

Primary atom site location: structure-invariant 
direct methods

Secondary atom site location: difference Fourier 
map

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
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w = 1/[σ2(Fo
2) + (0.026P)2 + 0.5977P] 

where P = (Fo
2 + 2Fc

2)/3
(Δ/σ)max = 0.001

Δρmax = 0.36 e Å−3

Δρmin = −0.44 e Å−3

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

Sn 0.39008 (2) 0.31848 (2) 0.21713 (2) 0.01326 (4)
S1 0.19166 (4) 0.50402 (3) 0.11108 (3) 0.01639 (8)
S2 0.17439 (4) 0.47895 (4) 0.36811 (3) 0.01880 (8)
N1 −0.00996 (14) 0.67737 (12) 0.22420 (12) 0.0176 (3)
C1 0.10482 (15) 0.56682 (14) 0.23615 (14) 0.0157 (3)
C2 −0.08409 (18) 0.72965 (17) 0.33124 (16) 0.0259 (4)
H2 −0.0355 0.6655 0.4017 0.031*
C3 −0.24831 (19) 0.74782 (18) 0.34878 (17) 0.0301 (4)
H3A −0.3009 0.8147 0.2840 0.045*
H3B −0.2902 0.7723 0.4243 0.045*
H3C −0.2600 0.6682 0.3493 0.045*
C4 −0.0574 (2) 0.8507 (2) 0.3257 (2) 0.0454 (5)
H4A 0.0498 0.8342 0.3141 0.068*
H4B −0.0976 0.8788 0.3998 0.068*
H4C −0.1073 0.9170 0.2594 0.068*
C5 −0.07259 (17) 0.75964 (14) 0.11003 (14) 0.0196 (3)
H5 −0.1546 0.8354 0.1323 0.023*
C6 −0.1481 (2) 0.69886 (17) 0.05404 (17) 0.0273 (4)
H6A −0.2025 0.7616 −0.0122 0.041*
H6B −0.2180 0.6691 0.1132 0.041*
H6C −0.0727 0.6267 0.0250 0.041*
C7 0.03571 (19) 0.81240 (16) 0.02586 (16) 0.0278 (4)
H7A 0.1147 0.7437 −0.0056 0.042*
H7B 0.0798 0.8497 0.0683 0.042*
H7C −0.0173 0.8779 −0.0396 0.042*
C11 0.55885 (16) 0.34926 (13) 0.28704 (13) 0.0147 (3)
C12 0.68313 (16) 0.35637 (15) 0.21077 (14) 0.0191 (3)
H12 0.6918 0.3435 0.1331 0.023*
C13 0.79426 (17) 0.38199 (16) 0.24707 (15) 0.0228 (3)
H13 0.8761 0.3902 0.1931 0.027*
C14 0.78624 (17) 0.39561 (15) 0.36188 (16) 0.0220 (3)
H14 0.8633 0.4115 0.3872 0.026*
C15 0.66454 (17) 0.38591 (14) 0.43962 (15) 0.0195 (3)
H15 0.6594 0.3934 0.5188 0.023*
C16 0.55062 (16) 0.36527 (14) 0.40185 (14) 0.0167 (3)
H16 0.4661 0.3620 0.4546 0.020*
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C21 0.31244 (16) 0.16861 (14) 0.31013 (13) 0.0161 (3)
C22 0.40747 (18) 0.05244 (15) 0.37020 (15) 0.0215 (3)
H22 0.5088 0.0403 0.3739 0.026*
C23 0.3558 (2) −0.04562 (16) 0.42466 (16) 0.0256 (4)
H23 0.4216 −0.1239 0.4661 0.031*
C24 0.20910 (19) −0.03021 (16) 0.41896 (15) 0.0227 (3)
H24 0.1740 −0.0975 0.4565 0.027*
C25 0.11378 (18) 0.08408 (17) 0.35814 (16) 0.0255 (4)
H25 0.0132 0.0950 0.3529 0.031*
C26 0.16529 (18) 0.18255 (16) 0.30497 (15) 0.0234 (3)
H26 0.0989 0.2610 0.2643 0.028*
C31 0.50078 (15) 0.25703 (14) 0.05537 (14) 0.0162 (3)
C32 0.55917 (18) 0.12811 (15) 0.05353 (16) 0.0229 (3)
H32 0.5551 0.0668 0.1246 0.027*
C33 0.62313 (19) 0.08811 (16) −0.05083 (17) 0.0282 (4)
H33 0.6622 0.0000 −0.0505 0.034*
C34 0.63013 (19) 0.17592 (18) −0.15492 (16) 0.0272 (4)
H34 0.6732 0.1483 −0.2262 0.033*
C35 0.57407 (19) 0.30455 (17) −0.15524 (15) 0.0249 (3)
H35 0.5790 0.3653 −0.2265 0.030*
C36 0.51064 (17) 0.34382 (15) −0.05060 (14) 0.0197 (3)
H36 0.4731 0.4319 −0.0512 0.024*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Sn 0.01301 (6) 0.01352 (6) 0.01339 (6) −0.00463 (4) −0.00068 (4) −0.00360 (4)
S1 0.01698 (17) 0.01653 (17) 0.01422 (18) −0.00254 (13) −0.00113 (13) −0.00638 (13)
S2 0.01615 (17) 0.02318 (18) 0.01490 (18) −0.00338 (14) −0.00031 (13) −0.00680 (14)
N1 0.0147 (6) 0.0194 (6) 0.0190 (7) −0.0035 (5) −0.0015 (5) −0.0083 (5)
C1 0.0122 (6) 0.0189 (7) 0.0187 (8) −0.0070 (6) 0.0006 (5) −0.0076 (6)
C2 0.0201 (8) 0.0305 (9) 0.0226 (9) 0.0009 (7) 0.0008 (6) −0.0153 (7)
C3 0.0253 (9) 0.0306 (9) 0.0286 (10) −0.0063 (7) 0.0080 (7) −0.0087 (7)
C4 0.0423 (11) 0.0616 (14) 0.0523 (14) −0.0251 (10) 0.0112 (10) −0.0445 (12)
C5 0.0184 (7) 0.0170 (7) 0.0221 (8) −0.0032 (6) −0.0043 (6) −0.0053 (6)
C6 0.0278 (9) 0.0265 (9) 0.0297 (10) −0.0086 (7) −0.0116 (7) −0.0057 (7)
C7 0.0280 (9) 0.0232 (8) 0.0295 (10) −0.0081 (7) 0.0028 (7) −0.0061 (7)
C11 0.0136 (6) 0.0116 (6) 0.0173 (8) −0.0025 (5) −0.0032 (5) −0.0026 (5)
C12 0.0153 (7) 0.0211 (7) 0.0178 (8) −0.0027 (6) −0.0015 (6) −0.0048 (6)
C13 0.0134 (7) 0.0265 (8) 0.0256 (9) −0.0058 (6) 0.0005 (6) −0.0045 (7)
C14 0.0154 (7) 0.0208 (8) 0.0312 (9) −0.0049 (6) −0.0071 (6) −0.0068 (7)
C15 0.0217 (7) 0.0157 (7) 0.0200 (8) −0.0025 (6) −0.0053 (6) −0.0065 (6)
C16 0.0159 (7) 0.0142 (7) 0.0178 (8) −0.0031 (5) −0.0009 (6) −0.0038 (6)
C21 0.0192 (7) 0.0169 (7) 0.0139 (7) −0.0078 (6) 0.0014 (6) −0.0058 (6)
C22 0.0210 (8) 0.0211 (8) 0.0230 (8) −0.0084 (6) −0.0041 (6) −0.0029 (6)
C23 0.0315 (9) 0.0184 (8) 0.0249 (9) −0.0081 (7) −0.0041 (7) −0.0019 (7)
C24 0.0314 (9) 0.0233 (8) 0.0192 (8) −0.0168 (7) 0.0075 (6) −0.0094 (6)
C25 0.0204 (8) 0.0312 (9) 0.0291 (9) −0.0140 (7) 0.0047 (7) −0.0104 (7)
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C26 0.0182 (8) 0.0229 (8) 0.0264 (9) −0.0060 (6) −0.0006 (6) −0.0036 (7)
C31 0.0131 (7) 0.0189 (7) 0.0179 (8) −0.0054 (6) −0.0003 (5) −0.0071 (6)
C32 0.0225 (8) 0.0194 (8) 0.0260 (9) −0.0062 (6) 0.0008 (6) −0.0074 (7)
C33 0.0265 (8) 0.0225 (8) 0.0389 (10) −0.0074 (7) 0.0034 (7) −0.0180 (8)
C34 0.0241 (8) 0.0378 (10) 0.0267 (9) −0.0127 (7) 0.0062 (7) −0.0212 (8)
C35 0.0270 (8) 0.0312 (9) 0.0189 (8) −0.0134 (7) 0.0027 (6) −0.0079 (7)
C36 0.0201 (7) 0.0201 (8) 0.0201 (8) −0.0071 (6) 0.0001 (6) −0.0078 (6)

Geometric parameters (Å, º) 

Sn—S1 2.4792 (4) C12—H12 0.9500
Sn—S2 2.9264 (4) C13—C14 1.387 (3)
Sn—C11 2.1446 (14) C13—H13 0.9500
Sn—C21 2.1349 (15) C14—C15 1.391 (2)
Sn—C31 2.1754 (15) C14—H14 0.9500
C1—S1 1.7587 (15) C15—C16 1.388 (2)
C1—S2 1.7006 (16) C15—H15 0.9500
C1—N1 1.336 (2) C16—H16 0.9500
C5—N1 1.495 (2) C21—C26 1.391 (2)
C2—N1 1.497 (2) C21—C22 1.394 (2)
C2—C3 1.517 (2) C22—C23 1.387 (2)
C2—C4 1.519 (3) C22—H22 0.9500
C2—H2 1.0000 C23—C24 1.383 (2)
C3—H3A 0.9800 C23—H23 0.9500
C3—H3B 0.9800 C24—C25 1.385 (3)
C3—H3C 0.9800 C24—H24 0.9500
C4—H4A 0.9800 C25—C26 1.387 (2)
C4—H4B 0.9800 C25—H25 0.9500
C4—H4C 0.9800 C26—H26 0.9500
C5—C7 1.515 (2) C31—C32 1.397 (2)
C5—C6 1.519 (2) C31—C36 1.396 (2)
C5—H5 1.0000 C32—C33 1.391 (3)
C6—H6A 0.9800 C32—H32 0.9500
C6—H6B 0.9800 C33—C34 1.382 (3)
C6—H6C 0.9800 C33—H33 0.9500
C7—H7A 0.9800 C34—C35 1.388 (3)
C7—H7B 0.9800 C34—H34 0.9500
C7—H7C 0.9800 C35—C36 1.390 (2)
C11—C12 1.395 (2) C35—H35 0.9500
C11—C16 1.397 (2) C36—H36 0.9500
C12—C13 1.388 (2)

C21—Sn—C11 119.87 (6) C12—C11—C16 118.47 (14)
C21—Sn—C31 102.73 (6) C12—C11—Sn 117.04 (11)
C11—Sn—C31 103.38 (5) C16—C11—Sn 124.47 (11)
C21—Sn—S1 112.27 (4) C13—C12—C11 120.79 (15)
C11—Sn—S1 119.12 (4) C13—C12—H12 119.6
C31—Sn—S1 93.24 (4) C11—C12—H12 119.6
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C21—Sn—S2 88.10 (4) C14—C13—C12 120.24 (15)
C11—Sn—S2 86.68 (4) C14—C13—H13 119.9
C31—Sn—S2 158.41 (4) C12—C13—H13 119.9
S1—Sn—S2 65.260 (11) C13—C14—C15 119.49 (15)
C1—S1—Sn 95.87 (5) C13—C14—H14 120.3
C1—S2—Sn 82.36 (5) C15—C14—H14 120.3
C1—N1—C5 125.74 (13) C14—C15—C16 120.21 (15)
C1—N1—C2 119.61 (13) C14—C15—H15 119.9
C5—N1—C2 114.62 (12) C16—C15—H15 119.9
N1—C1—S2 123.73 (12) C15—C16—C11 120.71 (14)
N1—C1—S1 119.94 (12) C15—C16—H16 119.6
S2—C1—S1 116.33 (8) C11—C16—H16 119.6
N1—C2—C3 111.83 (14) C26—C21—C22 118.14 (14)
N1—C2—C4 110.44 (15) C26—C21—Sn 119.77 (11)
C3—C2—C4 112.51 (15) C22—C21—Sn 121.95 (11)
N1—C2—H2 107.3 C23—C22—C21 120.74 (15)
C3—C2—H2 107.3 C23—C22—H22 119.6
C4—C2—H2 107.3 C21—C22—H22 119.6
C2—C3—H3A 109.5 C24—C23—C22 120.43 (15)
C2—C3—H3B 109.5 C24—C23—H23 119.8
H3A—C3—H3B 109.5 C22—C23—H23 119.8
C2—C3—H3C 109.5 C23—C24—C25 119.52 (15)
H3A—C3—H3C 109.5 C23—C24—H24 120.2
H3B—C3—H3C 109.5 C25—C24—H24 120.2
C2—C4—H4A 109.5 C24—C25—C26 119.94 (15)
C2—C4—H4B 109.5 C24—C25—H25 120.0
H4A—C4—H4B 109.5 C26—C25—H25 120.0
C2—C4—H4C 109.5 C21—C26—C25 121.22 (15)
H4A—C4—H4C 109.5 C21—C26—H26 119.4
H4B—C4—H4C 109.5 C25—C26—H26 119.4
N1—C5—C7 113.59 (13) C32—C31—C36 117.70 (14)
N1—C5—C6 112.50 (13) C32—C31—Sn 120.43 (12)
C7—C5—C6 114.30 (15) C36—C31—Sn 121.81 (11)
N1—C5—H5 105.1 C33—C32—C31 120.96 (16)
C7—C5—H5 105.1 C33—C32—H32 119.5
C6—C5—H5 105.1 C31—C32—H32 119.5
C5—C6—H6A 109.5 C34—C33—C32 120.27 (16)
C5—C6—H6B 109.5 C34—C33—H33 119.9
H6A—C6—H6B 109.5 C32—C33—H33 119.9
C5—C6—H6C 109.5 C33—C34—C35 119.89 (16)
H6A—C6—H6C 109.5 C33—C34—H34 120.1
H6B—C6—H6C 109.5 C35—C34—H34 120.1
C5—C7—H7A 109.5 C36—C35—C34 119.53 (16)
C5—C7—H7B 109.5 C36—C35—H35 120.2
H7A—C7—H7B 109.5 C34—C35—H35 120.2
C5—C7—H7C 109.5 C35—C36—C31 121.64 (15)
H7A—C7—H7C 109.5 C35—C36—H36 119.2
H7B—C7—H7C 109.5 C31—C36—H36 119.2
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C5—N1—C1—S2 178.33 (11) C13—C14—C15—C16 −1.3 (2)
C2—N1—C1—S2 0.0 (2) C14—C15—C16—C11 2.4 (2)
C5—N1—C1—S1 −2.2 (2) C12—C11—C16—C15 −0.9 (2)
C2—N1—C1—S1 179.49 (11) Sn—C11—C16—C15 −179.42 (11)
Sn—S2—C1—N1 −176.75 (13) C26—C21—C22—C23 −0.9 (2)
Sn—S2—C1—S1 3.78 (7) Sn—C21—C22—C23 −176.59 (13)
Sn—S1—C1—N1 176.06 (11) C21—C22—C23—C24 0.8 (3)
Sn—S1—C1—S2 −4.44 (8) C22—C23—C24—C25 0.1 (3)
C1—N1—C2—C3 −120.82 (16) C23—C24—C25—C26 −0.9 (3)
C5—N1—C2—C3 60.70 (19) C22—C21—C26—C25 0.1 (2)
C1—N1—C2—C4 113.06 (18) Sn—C21—C26—C25 175.91 (13)
C5—N1—C2—C4 −65.42 (18) C24—C25—C26—C21 0.8 (3)
C1—N1—C5—C7 −64.0 (2) C36—C31—C32—C33 −0.8 (2)
C2—N1—C5—C7 114.38 (15) Sn—C31—C32—C33 176.56 (12)
C1—N1—C5—C6 67.84 (19) C31—C32—C33—C34 0.1 (3)
C2—N1—C5—C6 −113.79 (15) C32—C33—C34—C35 0.5 (3)
C16—C11—C12—C13 −1.6 (2) C33—C34—C35—C36 −0.3 (3)
Sn—C11—C12—C13 176.97 (12) C34—C35—C36—C31 −0.4 (2)
C11—C12—C13—C14 2.7 (2) C32—C31—C36—C35 1.0 (2)
C12—C13—C14—C15 −1.3 (2) Sn—C31—C36—C35 −176.35 (12)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C34—H34···C24i 0.95 2.82 3.757 (3) 171

Symmetry code: (i) −x+1, −y, −z.


