See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of benzyltrichloridobis(1*H*pyrazole-κ²*N*)tin(IV), C₁₃H₁₅Cl₃N₄Sn

https://doi.org/10.1515/ncrs-2019-0129 Received February 20, 2019; accepted March 11, 2019; available online March 28, 2019

Abstract

C₁₃H₁₅Cl₃N₄Sn, monoclinic, *C*2/*c* (no. 15), a = 32.4593(4) Å, b = 7.43400(10) Å, c = 14.7108(2) Å, $\beta = 106.084(1)^{\circ}$, V = 3410.80(8) Å³, Z = 8, $R_{gt}(F) = 0.0151$, $wR_{ref}(F^2) = 0.0410$, T = 293(2) K.

CCDC no.: 1902318

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list

Table 1: Data collection and handling.

Crystal:	Prism, colorless
Size:	$0.26 \times 0.20 \times 0.07~\text{mm}$
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	1.97 mm^{-1}
Diffractometer, scan mode:	Bruker SMART, $oldsymbol{arphi}$ and ω -scans
θ_{\max} , completeness:	28.4°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	31378, 4198, 0.015
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 4051
N(param) _{refined} :	196
Programs:	Bruker programs [1], SHELX [2–4],
	WinGX and ORTEP [5]

of the atoms including atomic coordinates and displacement parameters.

Source of material

The elemental analysis was performed on a Perkin-Elmer EA2400 CHN analyser. The IR spectrum was recorded using a Perkin-Elmer RX1 spectrophotometer in a Nujol mull between KBr plates. The ¹H NMR spectrum was recorded in CDCl₃ solution on a Bruker AVN FT-NMR spectrometer with chemical shifts relative to Me₄Si.

Dibenzyltin dichloride was prepared from direct synthesis using tin powder (Sigma-Aldrich) and benzyl chloride (Sigma-Aldrich) in toluene [6]. Pyrazole (Sigma-Aldrich; 0.14 g, 2.0 mmol) and dibenzyltin dichloride (0.37 g, 1 mmol) were heated in 95% ethanol (50 mL) for 30 min. After filtration, the filtrate was evaporated until colourless crystals were formed. Yield: 0.31 g (66%). *M*.pt: 396–398 K. Calcd. for C₁₃H₁₅Cl₃N₄Sn: C 34.40; H 3.31; N 12.35%. Found: C 34.72; H 3.12; N 11.85%. **IR** (cm⁻¹) 569 (*m*) v(Sn–N), 1516 (*s*) v(C=N), 3311 (*m*) v(N–H). ¹**H NMR** (CDCl₃, p.p.m.): δ 7.03–7.23 (5*H*, Ph–H), 2.97 (2*H*, Ph–CH₂), 6.25–7.60 (6*H*, pyrazole-H), 12.81 (2*H*, N–H).

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The N-bound H-atoms were located in difference Fourier maps but were refined with a distance restraint of N–H = 0.86 ± 0.01 Å, and with $U_{\rm iso}({\rm H})$ set to $1.2U_{\rm equiv}({\rm N})$. Owing to poor agreement, the (2 0 0) reflection was removed from the final cycles of refinement.

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 See Mun Lee et al., published by De Gruyter. ඟ שע License.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
Sn	0.09953(2)	0.91211(2)	0.20525(2)	0.01493(4)
Cl1	0.13415(2)	0.69623(5)	0.32691(2)	0.02536(8)
Cl2	0.05745(2)	1.07713(4)	0.06465(2)	0.01991(7)
Cl3	0.05946(2)	1.06376(5)	0.30370(2)	0.02106(7)
N1	0.12381(4)	0.74538(16)	0.10400(8)	0.0180(2)
N2	0.10964(4)	0.76516(16)	0.00930(8)	0.0197(2)
H2N	0.0903(5)	0.844(2)	-0.0135(13)	0.024*
N3	0.04611(4)	0.71723(15)	0.16662(8)	0.0169(2)
N4	0.00446(4)	0.76574(16)	0.14478(9)	0.0207(2)
H4N	-0.0023(6)	0.8760(14)	0.1455(14)	0.025*
C1	0.13130(5)	0.6595(2)	-0.03484(11)	0.0263(3)
H1	0.127124	0.651259	-0.099846	0.032*
C2	0.16086(5)	0.5655(2)	0.03346(12)	0.0273(3)
H2	0.180396	0.480662	0.024302	0.033*
C3	0.15541(5)	0.6239(2)	0.11937(11)	0.0221(3)
H3	0.171368	0.584252	0.178631	0.027*
C4	-0.02141(5)	0.6234(2)	0.12273(10)	0.0216(3)
H4	-0.051226	0.624823	0.105507	0.026*
C5	0.00431(5)	0.4744(2)	0.13029(13)	0.0297(3)
H5	-0.004416	0.355301	0.119305	0.036*
C6	0.04602(5)	0.5387(2)	0.15772(12)	0.0266(3)
H6	0.070454	0.467450	0.168390	0.032*
C7	0.15224(5)	1.1026(2)	0.23733(11)	0.0229(3)
H7A	0.141057	1.222462	0.219750	0.027*
H7B	0.165799	1.102152	0.304960	0.027*
C8	0.18504(5)	1.06020(19)	0.18675(11)	0.0207(3)
C9	0.17840(5)	1.1089(2)	0.09221(12)	0.0250(3)
H9	0.153575	1.170627	0.061126	0.030*
C10	0.20827(6)	1.0667(3)	0.04374(14)	0.0355(4)
H10	0.203451	1.100327	-0.019225	0.043*
C11	0.24533(6)	0.9741(3)	0.08962(16)	0.0401(4)
H11	0.265425	0.945454	0.057488	0.048*
C12	0.25226(5)	0.9245(2)	0.18325(16)	0.0355(4)
H12	0.277095	0.862431	0.213966	0.043*
C13	0.22248(5)	0.9666(2)	0.23170(12)	0.0274(3)
H13	0.227454	0.932364	0.294623	0.033*

Discussion

There are two crystal structures in the literature conforming to the general formula RSn(1H-pyrazole)₂ X_3 , namely for X = Cl and R = Ph [7] and R = 4-methylbenzyl [8]. The common feature of these structures is a facial arrangement of the three chlorido substituents and the presence of intra- and intermolecular N-H···Cl hydrogen bonding. Herein, the crystal and molecular structures of a third derivative, *i.e.* X = Cl and R = benzyl, are described.

The molecular structure (Figure, 50% displacement ellipsoids) features a six-coordinate tin centre defined by three chlorido atoms, a benzyl-C atom and two nitrogen atoms derived from the monodentate pyrazole molecules. The resultant CCl_3N_2 donor set has a *fac*-arrangement of the

chloride atoms. There are systematic variations in the Sn– N bond lengths with the Sn–N1 bond [2.2419(12) Å], having the N1 atom opposite the electronegative Cl3 atom, being significantly longer than the Sn–N3 bond [2.2096(12) Å], with the N3 atom opposite to the methylene-C atom. The Sn–Cl bond lengths span a relatively narrow range, *i.e.* 2.4345(3) Å [Sn–Cl1] to 2.4705(3) [Sn–Cl3]. An intramolecular N2– H2n···Cl2 hydrogen bond is noted [H2n···Cl2 = 2.478(16) Å, N2···Cl2 = 3.1106(13) Å with angle at H2n = 131.3(15)°]. The dihedral angle between the pyrazole rings is 77.85(9)°, indicating an almost orthogonal relationship, and the dihedral angles between each of the N1- and N3-pyrazole rings and the benzyl ring are 22.89(9) and 76.27(7)°, respectively.

In the crystal, pyrazole-N–H···Cl hydrogen bonds involving both acidic protons and symmetry-related Cl3 atoms are observed [N2–H2n···Cl3ⁱ: H2n···Cl3ⁱ = 2.686(18) Å, N2···Cl3ⁱ = 3.2694(12) Å with angle at H2n = 126.6(15)°; N4–H4n···Cl3ⁱⁱ : H4n···Cl3ⁱⁱ = 2.592(18) Å, N4···Cl3ⁱⁱ = 3.2648(14) Å with angle at H4n = 137.0(16)° for symmetry operations i: x, 2 - y, -1/2 + z and ii: -x, y, 1/2 - z]. The result of the hydrogen bonding is the formation of a chain along the c axis with a zigzag topology. Within the chain, there are close π (pyrazole)··· π (pyrazole)ⁱⁱ contacts occurring between N3-pyrazole rings related by 2-fold symmetry [inter-centroid separation = 3.534(1) Å with an angle of inclination = 11.18(9)°]. The chains pack in the crystal without directional interactions between them.

Acknowledgements: Sunway University is thanked for supporting studies in organotin chemistry.

References

- Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA (2008).
- Sheldrick, G. M.: SADABS. University of Göttingen, Germany (1996).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- 5. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. **45** (2012) 849–854.
- Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. Di- and tribenzyltin chlorides. J. Am. Chem. Soc. 83 (1961) 538–541.
- Casas, J. S.; Castellano, E. E.; Barros, F. J. G.; Sanchez, A.; Gonzalez, A. S.; Sordo, J.; Zukerman-Schpector, J.: Imidazole and pyrazole complexes of phenyltin(IV) halides: The crystal structures of dichlorodiphenyl bis(pyrazole)tin(IV) and trichlorophenylbis(pyrazole)tin(IV). J. Organomet. Chem. **519** (1996) 209–216.
- Keng, T. C.; Lo, K. M.; Ng, S. W.: Trichlorido(4-methylbenzyl)bis (1H-pyrazole-κN²)tin(IV). Acta Crystallogr. E67 (2011) m659.