
റി

Chien Ing Yeo and Edward R. T. Tiekink*

Crystal structure of N-(3-methylphenyl)(propan-2yloxy)carbothioamide, C₁₁H₁₅NOS

https://doi.org/10.1515/ncrs-2019-0125 Received February 20, 2019; accepted March 16, 2019; available online April 4, 2019

Abstract

 $C_{11}H_{15}NOS$, monoclinic, C_{2}/c (no. 15), a = 21.0452(12) Å, c = 17.1892(10) Å, $\beta = 93.3520(10)^{\circ}$ b = 6.1447(4) Å. $V = 2219.0(2) \text{ Å}^3$, Z = 8, $R_{gt}(F) = 0.0291$, $wR_{ref}(F^2) = 0.0854$, T = 100(2) K.

CCDC no.: 1903611

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All chemicals and solvents were used as purchased without purification. The reaction was carried out under ambient conditions. The melting point was determined on a Krüss KSP1N melting point meter. The IR spectrum was obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm⁻¹; abbreviation: s, strong.

Preparation of the title compound: m-Tolyl isothiocyanate (Merck; 2.5 mmol, 0.34 mL) was added to NaOH

Table 1: Data collection and handling.

Crystal:	Colourless prism		
Size:	$0.20\times0.11\times0.09~\text{mm}$		
Wavelength:	Mo $K\alpha$ radiation (0.71073 Å)		
μ :	$0.26 \ \text{mm}^{-1}$		
Diffractometer, scan mode:	Bruker SMART APEX, ω		
$ heta_{ exttt{max}}$, completeness:	27.5°, >99%		
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	13386, 2545, 0.024		
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2283$		
$N(param)_{refined}$:	133		
Programs:	Bruker [1], SHELX [2–4],		
	WinGX/ORTEP [5]		

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Atom	х	у	Z	U _{iso} */U _{eq}
S1	0.35255(2)	-0.21699(5)	0.00951(2)	0.01905(10)
01	0.36789(4)	0.15300(15)	0.08977(5)	0.01890(19)
N1	0.26773(5)	0.03575(17)	0.07219(6)	0.0165(2)
H1N	0.2418(6)	-0.063(2)	0.0530(8)	0.020*
C1	0.32909(5)	0.00139(19)	0.05886(6)	0.0157(2)
C2	0.23881(5)	0.19710(19)	0.11801(6)	0.0148(2)
С3	0.18019(5)	0.1410(2)	0.14645(7)	0.0171(2)
Н3	0.1625	0.0017	0.1348	0.021*
C4	0.14727(6)	0.2859(2)	0.19151(7)	0.0186(2)
C5	0.17389(6)	0.4890(2)	0.20825(7)	0.0188(2)
H5	0.1523	0.5892	0.2395	0.023*
C6	0.23190(6)	0.5457(2)	0.17949(7)	0.0188(2)
Н6	0.2495	0.6852	0.1911	0.023*
C7	0.26468(6)	0.40209(19)	0.13412(7)	0.0170(2)
H7	0.3042	0.4429	0.1143	0.020*
C8	0.08445(7)	0.2229(2)	0.22276(9)	0.0296(3)
H8A	0.0848	0.2582	0.2784	0.044*
H8B	0.0776	0.0663	0.2156	0.044*
H8C	0.0500	0.3032	0.1946	0.044*
C9	0.43606(5)	0.1434(2)	0.07709(7)	0.0195(3)
Н9	0.4510	-0.0111	0.0796	0.023*
C10	0.46806(7)	0.2724(3)	0.14296(9)	0.0334(3)
H10A	0.4568	0.2105	0.1929	0.050*
H10B	0.4538	0.4241	0.1395	0.050*
H10C	0.5143	0.2665	0.1393	0.050*
C11	0.44799(6)	0.2392(2)	-0.00183(8)	0.0236(3)
H11A	0.4280	0.1470	-0.0428	0.035*
H11B	0.4939	0.2468	-0.0081	0.035*
H11C	0.4298	0.3858	-0.0057	0.035*

Open Access. © 2019 Chien Ing Yeo et al., published by De Gruyter. 🕲 🖭 This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

(Merck; 2.5 mmol, 0.10 g) in i-PrOH (Merck; 5 mL) and the mixture was left for stirring at room temperature for 2 h, followed by the addition of excess 5 M HCl solution. The resulting mixture was stirred for a further 1.5 h. The final product was extracted with chloroform (Merck; 20 mL) and left for evaporation at room temperature, yielding brown crystals after 3 weeks. M.pt: 323–325 K. IR (cm⁻¹): 3220 (s) v(N-H), 1491 (s) $\nu(C-N)$, 1207 (s) $\nu(C-O)$, 1091 (s) $\nu(C=S)$.

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95-1.00 Å) and refined as riding with $U_{iso}(H) = 1.2-1.00 \text{ Å}$ 1.5 $U_{\rm eq}$ (C). The N-bound H-atom was located in a difference Fourier map but was refined with a distance restraint of N- $H = 0.88 \pm 0.01$ Å, and with $U_{iso}(H)$ set to $1.2U_{equiv}(N)$. Owing to poor agreement, the (9 1 1) reflection was omitted from the final cycles of refinement.

Comment

A recent overview of the known crystal structures for molecules of the general formula, ROC(=S)N(H)R''(R/R'' = alkyl and/or aryl), i.e. the alkoxycarbothioamides, showed a high degree of concordance in their structural features [6]. Most notable was the universal adoption of a thioamide tautomer. The majority of structures featured a syn-disposition of the thione-S and thioamide-N-H atoms. The exceptions occur when an anti-disposition of the thione-S and thioamide-N-H atoms is found as, for example, in the structure where R = Me and R'' = 4-C(= O)Me-phenyl [7], allowing for the formation of intermolecular N-H···O hydrogen bonding, and where R = 4-pyridylphenyl and R'' = phenyl[8], allowing for intermolecular N-H···N hydrogen bonding. Herein, as a continuation of structural studies of this class of compound [6, 7, 9], the crystal and molecular structures of the compound with $R = {}^{i}$ Pr and R'' = 3-Me-phenyl are described.

The molecular structure is shown in the figure (70% displacement ellipsoids) and features the normally observed [6] syn-disposition of the thione-S and thioamide-N—H atoms. In accord with expectation, the central C1, N1, O1, S1 residue is planar with the r.m.s. deviation being 0.0044 Å. The dihedral angle between the central plane and appended 3-tolyl group is 23.06(5)°. Evidence for the thioamide tautomer is found in the magnitude of the C1=S1 [1.6772(12) Å] and C1-N1 [1.3412(15) Å] bond lengths, and in the location of the thioamide-N—H atom in the crystallographic refinement. The angles subtended at the quaternary-C1 atom follow the expected trends with S1-C1-O1 [124.81(9)°] being wider than S1-C1-N1 [121.82(9)°] and each of these being wider than O1-C1-N1 [113.36(10)°].

The syn-disposition of the thione-S1 and thioamide-N-H atoms allows for the formation of thioamide-N- $H \cdots S$ (thione) hydrogen bonds in the molecular packing $[N1-H1n\cdots S1^{i}:$ $H1n \cdot \cdot \cdot S1^{i} = 2.584(13) \text{ Å},$ $N1 \cdots S1^i =$ 3.4352(11) Å with angle at $H1n = 167.0(11)^{\circ}$ for symmetry operation i: 1/2 - x, -1/2 - y, -z]. As these occur between centrosymmetrically related molecules, eight-membered {···HNCS}₂ synthons ensue. Intermolecular points of contact of the type tolyl-C-H··· π [C6-H6···Cg(C2-C7)ⁱⁱ: $H6\cdots Cg(C2-C7)^{ii} = 2.80 \text{ Å}, \quad C6\cdots Cg(C2-C7)^{ii} = 3.4597(13) \text{ Å}$ and angle at $H6 = 127^{\circ}$ for ii: 1/2 - x, 1/2 + y, 1/2 - z] and parallel $C=S\cdots\pi$ [C1-S1····Cg(C2-C7)ⁱⁱⁱ: S1····Cg(C2- $C7)^{iii} = 3.8929(6) \text{ Å}, \quad C1 \cdots Cg(C2-C7)^{iii} = 3.9582(12) \text{ Å} \quad \text{and}$ angle at $S1 = 79.85(4)^{\circ}$ for iii: 1/2 - x, 1/2 - y, -z, each involving the 3-tolyl ring, serve to link molecules into a supramolecular layer in the bc-plane. Layers stack along the a axis direction without directional interactions between them.

The most closely related structures in the literature are the polymorphic structures EtOC(=S)N(H)(3-Me-phenyl)[6, 10], *i.e.* where ⁱPr is substituted with Et; both polymorphs are monoclinic. In the $P2_1/c$ form [6], there are two independent molecules in the asymmetric unit whereas in the C2/c form [10], one molecule comprises the asymmetric unit. Not unexpectedly, similar trends in conformation and geometric parameters are evident, along with supramolecular association via $\{\cdots HNCS\}_2$ synthons, as described above.

Acknowledgements: The University of Malaya's X-ray laboratory is thanked for the intensity data. Sunway University is thanked for support of crystal engineering and biological studies of thiocarbamides and their metal complexes.

References

- 1. Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA (2008).
- 2. Sheldrick, G. M.: SADABS. University of Göttingen, Germany (1996).
- 3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
- 4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
- 5. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849-854.
- 6. Jotani, M. M.; Yeo, C. I.; Tiekink, E. R. T.: A new monoclinic polymorph of N-(3-methylphenyl) ethoxycarbothioamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 1889-1897.
- 7. Ho, S. Y.; Bettens, R. P. A.; Dakternieks, D.; Duthie, A.; Tiekink, E. R. T.: Prevalence of the thioamide {··· H— N-C=S₂ synthon solid-state (X-ray crystallography),

- solution (NMR) and gas-phase (theoretical) structures of *O*-methyl-*N*-aryl-thiocarbamides. CrystEngComm **7** (2005) 682–689.
- Xiao, H.-L.; Wang, K.-F.; Jian, F.-F.: (4-Pyridyl)methyl N-phenylthiocarbamate. Acta Crystallogr. E62 (2006) o2852-o2853.
- 9. Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of N-(2-methylphenyl)ethoxycarbothioamide, $C_{10}H_{13}NOS$. Z. Kristallogr. NCS **233** (2018) 299–301.
- Tadbuppa, P.; Tiekink, E. R. T.: Crystal structure of o-ethyl N-(m-tolyl)thiocarbamate, SC(OC₂H₅)NH(C₆H₄CH₃). Z. Kristallogr. NCS 220 (2005) 395–396.