Yee Seng Tan and Edward R.T. Tiekink*

Crystal structure of *catena*-poly[(μ_2 -4,4'-bipyridyl- $\kappa N, N'$)-bis(O, O'-dimethyldithiophosphato- κS)zinc(II)], {C₁₄H₂₀N₂O₄P₂S₄Zn}_n

https://doi.org/10.1515/ncrs-2019-0085

Received January 28, 2019; accepted February 14, 2019; available online March 26, 2019

Abstract

C₁₄H₂₀N₂O₄P₂S₄Zn, triclinic, $P\bar{1}$ (no. 2), a = 8.0014(2) Å, b = 10.3376(2) Å, c = 14.2488(3) Å, $\alpha = 84.676(2)^{\circ}$, $\beta = 76.042(2)^{\circ}$, $\gamma = 79.752(2)^{\circ}$, V = 1124.01(4) Å³, Z = 2, $R_{\rm gt}(F) = 0.0265$, $wR_{\rm ref}(F^2) = 0.0655$, T = 100(2) K.

CCDC no.: 1897161

ට Open Access. © 2019 Yee Seng Tan et al., published by De Gruyter. [ෆා ਥਾ License. Table 1: Data collection and handling.

Crystal:	Prism, colorless
Size:	$0.13 \times 0.12 \times 0.08~\text{mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	6.54 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω -scans
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	21867, 4014, 0.023
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 3854
N(param) _{refined} :	248
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX and OPTEP [4]
	WINDX and OKTEP [4]

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The $Zn[S_2P(OMe)_2]_2$ precursor was prepared in high yield from an in-situ reaction of Zn(NO₃)₂.4H₂O (Alfa Aesar; 7.18 g, 0.05 mol), MeOH (Merck; 8.52 mL, 0.21 mol), P₂S₅ (Sigma-Aldrich; 11.71 g, 0.05 mol) and 50% w/w NaOH solution (Merck; 8.43 mL, 0.11 mol). The title compound was obtained by mixing the suspension of this precursor (0.50 g, 1.32 mmol) and 4,4'-bipyridine (Merck; 0.21 g, 1.34 mmol) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 mins at 373 K. The solution was filtered and the filtrate was collected in a sample vial containing acetonitrile (Merck; 1 mL). Colorless blocks formed after one day. Yield: 0.38 g, (54%, based on Zn[S₂P(OMe)₂]₂). M. pt (Biobase Automatic Melting Apparatus MP45): 418.85-420.95 K. IR (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm^{-1} , cm⁻¹): 1172 (s) v(C–O); 1008(s) v(P–O); 664 (s) v(P–S)_{asym}; 526 (m) v(P-S)_{svm}.

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. Owing to relatively high motion, the anisotropic displacement parameters for the C5–C9 atoms were constrained to be nearly isotropic.

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 2: Fractional atomic coordinates and isotropic or equivalentisotropic displacement parameters ($Å^2$).

Atom	X	у	z	U _{iso} */U _{eq}
Zn	0.46343(3)	0.27283(2)	0.73472(2)	0.01664(8)
P1	0.38164(7)	0.59038(5)	0.79734(4)	0.01873(12)
P2	0.82244(7)	0.05797(5)	0.70454(4)	0.01998(12)
S1	0.56722(6)	0.43041(5)	0.79876(3)	0.01991(11)
S2	0.14367(7)	0.57448(5)	0.86223(5)	0.03204(14)
S 3	0.65819(7)	0.14158(6)	0.61888(4)	0.02815(13)
S 4	0.73109(7)	0.07731(7)	0.84130(4)	0.03506(15)
01	0.4511(2)	0.70523(14)	0.83702(11)	0.0267(3)
02	0.4066(2)	0.63970(15)	0.68607(10)	0.0267(3)
03	1.0025(2)	0.11140(15)	0.66932(11)	0.0266(3)
04	0.88684(19)	-0.09007(14)	0.67307(12)	0.0272(3)
N1	0.3015(2)	0.17093(16)	0.83413(11)	0.0173(3)
N2	0.2890(2)	0.35794(15)	0.64923(11)	0.0162(3)
C1	0.4552(4)	0.7019(3)	0.93833(18)	0.0393(6)
H1A	0.484272	0.785001	0.952654	0.059*
H1B	0.543463	0.628765	0.952308	0.059*
H1C	0.340489	0.689712	0.978553	0.059*
C2	0.2830(4)	0.7433(3)	0.65822(18)	0.0397(6)
H2A	0.292596	0.743187	0.588344	0.059*
H2B	0.306003	0.827759	0.674027	0.059*
H2C	0.165078	0.730507	0.693050	0.059*
C3	1.0985(3)	0.1029(2)	0.56954(17)	0.0334(5)
H3A	1.205302	0.140999	0.560794	0.050*
H3B	1.026177	0.151565	0.527190	0.050*
H3C	1.129009	0.010406	0.553021	0.050*
C4	0.7687(4)	-0.1842(3)	0.7003(2)	0.0497(7)
H4A	0.831707	-0.272114	0.682763	0.075*
H4B	0.673889	-0.160255	0.666194	0.075*
H4C	0.719966	-0.184385	0.770301	0.075*
C5	0.2111(3)	0.2216(2)	0.91792(16)	0.0275(5)
H5	0.228056	0.305721	0.932074	0.033*
C6	0.0946(3)	0.1569(2)	0.98448(16)	0.0278(5)
H6	0.034425	0.195988	1.043573	0.033*
C7	0.0649(2)	0.03512(19)	0.96561(14)	0.0167(4)
C8	0.1618(3)	-0.0178(2)	0.88001(17)	0.0280(5)
H8	0.148929	-0.102423	0.864601	0.034*
C9	0.2772(3)	0.0519(2)	0.81694(17)	0.0275(5)
H9	0.342525	0.013325	0.758506	0.033*
C10	0.3489(3)	0.39310(19)	0.55554(14)	0.0187(4)
H10	0.471460	0.378964	0.529788	0.022*
C11	0.2420(3)	0.4485(2)	0.49494(14)	0.0186(4)
H11	0.290662	0.471350	0.429110	0.022*
C12	0.0607(2)	0.47097(18)	0.53119(14)	0.0151(4)
C13	-0.0003(3)	0.43506(19)	0.62835(14)	0.0187(4)
H13	-0.122104	0.448758	0.656302	0.022*
C14	0.1156(3)	0.37956(19)	0.68428(14)	0.0188(4)
H14	0.070656	0.355666	0.750386	0.023*

Discussion

Through the agency of sulphur bridging, homoleptic zinc dithiophosphates, $Zn[S_2P(OR)_2]_2$, are associated in the solid-state [5]. This mode of association invariably breaks down when potentially bidentate bridging molecules, e.g.

4,4'-bipyridine, are complexed with these species [6], forming Zn–N bonds instead. Systematic evaluations of cocrystallisation outcomes when $\text{Zn}[\text{S}_2\text{P}(\text{OR})_2]_2$ and bidentate donors have been conducted [7, 8]. These studies showed that steric influences were important in determining the ultimate structure, for example when R = bulky cyclohexyl, only binuclear species could be isolated when the bridging ligand was 4,4'-bipyridine, regardless of the stoichiometry of the reagents [8]. Even more striking was the observation of monodentate coordination when the potentially bridging ligand was 1,2-bis(2-pyridyl)ethene [7]. In the present study the crystal and molecular structures of $\{\text{Zn}[\text{S}_2\text{P}(\text{OMe})_2]_2(4,4'$ bipyridine)}_n are described, where R is a relatively small methyl group.

The asymmetric unit of the title structure, extended to show the full 4,4'-bipyridine molecules (each is disposed about a centre of inversion) is shown in the upper view of the Figure (70% displacement ellipsoids; symmetry operations i: -x, -y, 2-z and ii: -x, 1-y, 1-z). The zinc(II) centre is coordinated by two monodentate dithiophosphate ligands [Zn-S1, S3=2.3019(5) and 2.3273(6) Å] and two nitrogen atoms derived from two bridging 4,4'-bipyridine ligands [Zn-N1, N2 = 2.0295(17) and 2.0951(16) Å]. The non-coordinating $Zn \cdots S2$, S4 separations [3.9422(6) and 3.2307(7) Å] are too long to be considered bonding interactions. The distortions from a regular tetrahedral geometry for the resultant N₂S₂ donor set are relatively small with the angles ranging from 97.79(5)°, for N2-Zn-S3, to 118.10(2)°, for S1-Zn-S3. The monodentate mode of coordination of the dithiophosphate ligands is reflected in the significant disparity in the associated P-S bond lengths. Thus, the P-S bonds formed with the non-coordinating S2 and S4 atoms are significantly shorter than the bonds involving the coordinating S1 and S3 atoms [P1–S1, S2 = 2.0185(7) and 1.9342(7) Å; P2–S3, S4 = 2.0341(7) and 1.9248(7) Å].

As seen in the lower view of the Figure, the resulting one-dimensional coordination polymer has a zig-zag topology and is aligned along $[0\ 1\ \overline{2}]$. Besides the binuclear species mentioned above, there are two literature precedents for comparison. Thus, for each of $\{\text{Zn}[S_2P(OR)_2]_2(4,4'\text{-bipyridine})\}_n$, i.e. R = Et [9] and R = iPr [10], zig-zag chains are observed as for the title structure. To a first approximation the pitch of each polymer is about the same, being 16.8 Å in the structure reported here, 16.4–17.5 Å for the R = Et species (for which there are two independent zinc atoms) and 15.9–16.1 Å for the R = iPr species (three independent zinc atoms).

In the crystal, pyridyl-C–H···S [C6–H6···S2ⁱⁱⁱ = 2.82 Å, C6···S2ⁱⁱⁱ = 3.654(2) Å with angle at H6 = 148° and C13– H13···S1^{iv} = 2.83 Å, C13···S1^{iv} = 3.723(2) Å with angle at H13 = 157° for symmetry operations iii: -x, 1-y, 2-z and iv: -1+x, y, z] and methyl-C–H··· π (pyridyl) $[C3-H3a\cdots Cg(N2,C10-C14)^v = 2.85 \text{ Å}, C3\cdots Cg(N2,C10-C14)^v = 3.436(2) \text{ Å}$ with angle at $H3a = 119^\circ$ for symmetry operation v: 1 + x, *y*, *z*] interactions link the chains into a three-dimensional architecture.

Acknowledgements: Sunway University is thanked for support of crystal engineering studies of metal 1,1-dithiolates.

References

- 1. Agilent Technologies: CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA (2017).
- 2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallog. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- 4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. **45** (2012) 849–854.
- Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 8 (2018) article no. 292 (34 pages).

- 6. Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals **8** (2018) article no. 18 (29 pages).
- Lai, C. S.; Liu, T.; Tiekink, E. R. T.: Steric control over polymer formation and topology in adducts of zinc dithiophosphate formed with bridging bipyridine ligands. CrystEngComm 6 (2004) 221–226.
- Chen, D.; Lai, C. S.; Tiekink, E. R. T.: Supramolecular aggregation in diimine adducts of zinc(II) dithiophosphates: controlling the formation of monomeric, dimeric, polymeric (zig-zag and helical), and 2-D motifs. CrystEngComm 8 (2006) 51–58.
- Zhu, D.-L.; Yu, Y.-P.; Guo, G.-C.; Zhuang, H.-L.; Huang, J.-S.; Liu, Q.; Xu, Z.; You, X.-Z.: catena-poly[bis(κ*O*,*O*'diethyldithiophosphato-S)zinc(II)-4,4'-bipyridyl-κ*N*:*N*']. Acta Crystallogr. **C52** (1996) 1963–1966.
- Glinskaya, L. A.; Shchukin, V. G.; Klevtsova, R. F.; Mazhara, A. N.; Larionov, S. V.: Synthesis and polymer structure of [Zn(4,4'-bipy)-{(i-PrO)₂PS₂}₂]_n and thermal properties of ZnL{(i-PrO)₂PS₂}₂(L = phen, 2,2'-bipy, 4,4'-bipy). J. Struct. Chem. **41** (2000) 632–639.