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Abstract: The title compound, 1-[N-methyl-N-(phenyl)amino]-3-(4-methylphenyl)thiourea (1), was
synthesized by the reaction of 1-methyl-1-phenyl hydrazine and 4-tolyl isothiocyanate, and was
characterized by spectroscopy (1H and 13C{1H} NMR, IR, and UV), elemental analysis as well as
by single crystal X-ray crystallography. In the solid state, the molecule exists as the thioamide
tautomer and features an anti-disposition of the thioamide–N–H atoms; an intramolecular N–H· · ·N
hydrogen bond is noted. The molecular conformation resembles that of the letter L. In the molecular
packing, thioamide-N1–H· · · S1(thione) hydrogen bonds lead to centrosymmetric eight-membered
{· · ·HNCS}2 synthons. The dimers are assembled into a supramolecular layer in the bc-plane by
phenyl- and methyl-C–H· · ·π(phenyl) interactions.

Keywords: thiourea; hydrogen bonding; X-ray crystallography

1. Introduction

Thiourea, H2NC(=S)NH2, is susceptible for to up to four substitutions to give a wide
range of compounds, R1(R2)NC(=S)N(R3)R4 for R1–4 = alkyl/aryl [1]. These molecules can
possess interesting properties and are well known for their ability to complex metal ions [1].
Recent interest in thiourea derivatives revolves around their applications in dual hydrogen
bonding catalysis for asymmetric synthesis [2,3] and for their potential biological potency [4],
including when complexing metals [5]. Indeed, the original interest in the title compound
1-[N-methyl-N-(phenyl)amino]-3-(4-methylphenyl)thiourea (1), Scheme 1, related to the investigation
of antiviral activity [6]; since then there have been no other reports of (1) in the literature. Herein,
the synthesis, spectroscopic characterization, and X-ray crystal structure determination of the title
compound, (1), are described.
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Scheme 1. Chemical diagram for 1-[N-methyl-N-(phenyl)amino]-3-(4-methylphenyl)thiourea (1). 
Scheme 1. Chemical diagram for 1-[N-methyl-N-(phenyl)amino]-3-(4-methylphenyl)thiourea (1).
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2. Results and Discussion

The reaction of 1-methyl-1-phenylhydrazine and 4-tolyl isothiocyanate yielded the title compound
(1) in good yield (71%). The compound was characterized by spectroscopy; see the Supplementary
Materials for original spectra. The 1H spectrum showed the expected resonances and integration.
The downfield shift for the NH proton proximate to the C=S and N(Me)Ph groups cf. NH(4-tolyl) is
ascribed to the proximity to the nitrogen bound lone pair of electrons. The most prominent feature of
the 13C{1H} spectrum was the downfield resonance at δ 180.2 ascribed to N2C(=S). In the IR spectrum,
characteristic bands of ν(N–H) [3266 (m)], ν(C–N) [1485 (vs)], and ν(C=S) [1256 (vs)] were observed.
In the UV spectrum, two bands were observed at λabs 242 nm and 267 nm and are ascribed to π-π* and
n-π* transitions, respectively.

The molecular structure of (1) was also determined by X-ray crystallographic methods and is
shown in Figure 1. The five atoms of the central chromophore, that is, S1, C1, and N1–N3, are effectively
co-planar as evidenced in the root mean square deviation of 0.0223 Å; the maximum deviation from
the least-squares plane was 0.0337(8) Å for the N2 atom. The appended C2–tolyl and C10–phenyl
rings form dihedral angles of 25.42(6) and 81.18(3)◦ with the central residue, respectively, indicating
skewed and orthogonal relationships. The dihedral angle between the terminal rings is 74.05(4)◦

which suggests that, to a first approximation, the molecule has the shape of the letter L. The C1–N1,
N2 bond lengths are similar [1.3491(16) cf. 1.3458(16) Å] but, the S1–C1–N1 angle [127.50(10)◦] is
significantly wider than the S1–C1–N2 angle [117.36(9)◦], presumably to minimize steric repulsion. The
thioamide–NH atoms adopt an anti-disposition. An intramolecular thioamide-N1-H· · ·N3 hydrogen
bond is noted [N1–H1n· · ·N3: H1n· · ·N3 = 2.200(14) Å, N1· · ·N3 = 2.6684(15) Å with angle at H1n =
113.5(11)◦] that closes an S(5) loop.
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The connections between the dimers are of the type phenyl- and methyl–C–H…π(phenyl) whereby 
the C10–C15 phenyl ring effectively functions as a bridge between the dimers. The result is a 
supramolecular layer in the bc-plane. Layers stack along the a-axis with no directional interactions 
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There is a closely related structure in the literature where the N-bound phenyl group of (1) is 
substituted by a methyl group and the original 4-tolyl ring is now a phenyl ring, that is, 
Me2NN(H)C(=S)N(H)Ph (2) [7]. Molecule (2) adopts essentially the same conformation as just 

Figure 1. The molecular structure of (1) showing atom labeling and displacement ellipsoids at the
70% probability level. Selected geometric parameters: C1–S1 = 1.6895(13) Å, N2–N3 = 1.4081(15) Å,
C1–N1 = 1.3491(16) Å, and C1–N2 = 1.3458(16) Å; C1–N1–C2 = 129.77(11)◦, C1–N2–N3 = 122.11(11)◦,
S1–C1–N1 = 127.50(10)◦, S1–C1–N2 = 117.36(9)◦, and N1–C1–N2 = 115.14(11)◦.

In the crystal of (1), the most prominent feature of the molecular packing is the formation of
thioamide-N1–H· · · S1(thione) hydrogen bonds. These lead to the formation of a supramolecular
dimer via a centrosymmetric, eight-membered {· · ·HNCS}2 synthon, as shown in Figure 2a; geometric
details characterizing intermolecular interactions discussed herein are given in the figure caption. The
connections between the dimers are of the type phenyl- and methyl–C–H· · ·π(phenyl) whereby
the C10–C15 phenyl ring effectively functions as a bridge between the dimers. The result is a
supramolecular layer in the bc-plane. Layers stack along the a-axis with no directional interactions
between them. A view of the unit cell contents is shown in Figure 2b.
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described for (1) but, some systematic changes in the key bond lengths are evident. Thus, while the 
C1=S1 [1.6813(18) Å] bond length in (2) is experimentally equivalent to that in (1), the C1–N1 [1.330(2) 
Å] and C1–N2 [1.330(3) Å] bond lengths in (2) are shorter. The reduction in the specified bond lengths 
is consistent with there being reduced delocalization of π-electron density over the ring as a result of 
replacing phenyl in (1) with electron donating methyl in (2), and 4-tolyl with electron-withdrawing 
phenyl. The molecular packing of (2) features the same eight-membered {…HNCS}2 synthon seen in 
the crystal of (1). 
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and methyl–C–H…π(phenyl) interactions [C6–H6…Cg(C10–C15)ii: H6…Cg(C10–C15)ii = 2.77 Å, 
C9…Cg(C10–C15)ii = 3.6338(15) Å with angle at H6 = 137°, and C9–H9c…Cg(C10–C15)ii: H9c…Cg(C10–
C15)ii = 2.72 Å, C9…Cg(C10–C15)ii = 3.5286(15) Å, angle at H9c = 156° for symmetry operations ii: ½ − 
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by thioamide–N–H· · · S(thione) hydrogen bonding [N2–H2n· · · S1i: H2n· · · S1i = 2.474(14) Å, N2· · · S1i

= 3.3155(12) Å, angle at H1n = 161.2(12)◦ for symmetry operation i: 1 − x, 1 − y, 1 − z] shown as
orange dashed lines and (b) a view of the unit cell contents shown in projection down the b-axis. The
phenyl– and methyl–C–H· · ·π(phenyl) interactions [C6–H6· · ·Cg(C10–C15)ii: H6· · ·Cg(C10–C15)ii

= 2.77 Å, C9· · ·Cg(C10–C15)ii = 3.6338(15) Å with angle at H6 = 137◦, and C9–H9c· · ·Cg(C10–C15)ii:
H9c· · ·Cg(C10–C15)ii = 2.72 Å, C9· · ·Cg(C10–C15)ii = 3.5286(15) Å, angle at H9c = 156◦ for symmetry
operations ii: 1

2 − x, 1
2 + y, z and iii: – 1

2 + x, 1
2 − y, 1 − z] are shown as purple dashed lines.

There is a closely related structure in the literature where the N-bound phenyl group of
(1) is substituted by a methyl group and the original 4-tolyl ring is now a phenyl ring, that is,
Me2NN(H)C(=S)N(H)Ph (2) [7]. Molecule (2) adopts essentially the same conformation as just
described for (1) but, some systematic changes in the key bond lengths are evident. Thus, while
the C1=S1 [1.6813(18) Å] bond length in (2) is experimentally equivalent to that in (1), the C1–N1
[1.330(2) Å] and C1–N2 [1.330(3) Å] bond lengths in (2) are shorter. The reduction in the specified
bond lengths is consistent with there being reduced delocalization of π-electron density over the
ring as a result of replacing phenyl in (1) with electron donating methyl in (2), and 4-tolyl with
electron-withdrawing phenyl. The molecular packing of (2) features the same eight-membered
{· · ·HNCS}2 synthon seen in the crystal of (1).

In conclusion, an X-ray crystallographic analysis on (1) confirms the molecule to exist as the
thioamide tautomer, to have an anti-disposition of the thioamide–N–H atoms and an intramolecular
N1–H· · ·N3 hydrogen bond. Overall, the conformation of the molecule resembles that of the letter L.
The presence of thioamide–N–H· · · S(thione) hydrogen bonds in the molecular packing leads to the
formation of eight-membered {· · ·HNCS}2 synthons.
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3. Materials and Methods

3.1. General Information

All standard chemicals and solvents were sourced from Merck (Darmstadt, Germany) and used
without further purification. The melting point was determined on a Biobase automatic melting point
apparatus MP450 (Biobase Group, Jinan, Shandong Province, China). The IR spectrum was measured
on a Bruker Vertex 70v FTIR (Billerica, MA, USA) spectrophotometer from 4000 to 80 cm−1. Elemental
analyses were performed on a Leco TruSpec Micro CHN Elemental Analyzer (Saint Joseph, MI, USA).
1H and 13C{1H} NMR spectra were recorded in CDCl3 solution on a Bruker Ascend 400 MHz NMR
(Billerica, MA, USA) spectrometer with chemical shifts relative to tetramethylsilane. The optical
absorption spectra were obtained from an acetonitrile solution of 1 × 10−5 M in the range 200–800 nm
on a Shimadzu UV-3600 plus UV/VIS/NIR (Shimadzu Corporation, Kyoto, Japan) spectrophotometer.

3.2. Synthesis and Characterization of (1)

1-Methyl-1-phenylhydrazine (0.01 mol, 1.18 mL) was added dropwise to 4-tolyl isothiocyanate
(0.01 mol, 1.49 g) in acetone (15 mL). The resulting mixture was stirred for 2 h and then left for slow
evaporation under ambient conditions. The solid obtained was recrystallized in the solvent mixture
1:1 v/v chloroform/acetonitrile. Colorless crystals were formed after two weeks. Yield: 1.93 g, 71%.
M. pt: 159.5–161.7 ◦C; Lit. 165 ◦C [6]. Anal. Calc. for C15H17N3S: C, 66.39; H, 6.31; N, 15.48%. Found:
C, 66.34; H, 6.26; N, 15.35%. IR (cm−1): 3266 (m) ν(N-H), 3138 (m) ν(C–H), 1485 (vs) ν(C–N), 1256
(vs) ν(C=S). 1H NMR (CDCl3): δ 8.78 (s, br, 1H, Ph–NH), 7.69 (s, br, 1H, N–NH), 7.41 (d, 2H, C6H4-3,
3JHH = 8.26 Hz), 7.36–7.32 (m, 2H, C6H5-3), 7.15 (d, 2H, C6H4-2, 3JHH = 8.13 Hz), 7.05–7.00 (m, 3H,
C6H5-2,4), 3.21 (s, 3H, NCH3), 2.32 (s, 3H, aryl–CH3). 13C{1H} NMR (CDCl3): δ 180.2 (Cq), 148.9 (C6H5,
C1), 136.1 (C6H4, C1), 135.0 (C6H4, C4), 129.5 (C6H4, C3, C5), 129.3 (C6H4, C2, C6), 124.7 (C6H5, C3,
C5), 122.4 (C6H5, C4), 114.8 (C6H5, C2, C6), 41.8 (NCH3), 21.0 (C6H4–CH3). UV (acetonitrile; nm,
L·cm−1·mol−1): λabs = 267, ε = 26,700; λabs = 242, ε = 22,500.

3.3. Crystallography

Intensity data for (1) were measured at T = 100(2) K on a XtaLAB Synergy Dual AtlasS2 (Rigaku
Polska SP. Z O O, Wrocław, Poland) diffractometer fitted with Cu Kα radiation (λ = 1.54184 Å)
using ω-scans in the θmax range 3.8◦–67.1◦. Data reduction, including absorption correction, was
accomplished with CrysAlis Pro [8]. Of the 18,012 reflections measured, 2550 were unique (Rint = 0.030),
and of these, 2356 data satisfied the I ≥ 2σ(I) criterion of observability. The structure was solved
by direct methods [9] and refined (anisotropic displacement parameters and C-bound H atoms
in the riding model approximation) on F2 [10]. The thioamide–N–H atoms were located from
a difference map and refined with a N–H restraint of 0.88 ± 0.01 Å. A weighting scheme of the
form w = 1/[σ2(Fo

2) + (0.039P)2 + 1.297P] was introduced, where P = (Fo
2 + 2Fc

2)/3). Based on the
refinement of 180 parameters, the final values of R and wR (all data) were 0.028 and 0.077, respectively.
The molecular structure diagram was generated with ORTEP for Windows [11] and the packing
diagram using DIAMOND [12].

Crystal data for C15H17N3S (1): M = 271.38, orthorhombic, Pbca, a = 10.50030(10) Å, b = 11.70230(10) Å,
c = 23.2486(3) Å, V = 2856.73(5) Å3, Z = 8, Dx = 1.262 g cm−3, F(000) = 1152 and µ = 1.918 mm−1. CCDC
deposition number: 1898244.

Supplementary Materials: The following are available online: 1H and 13C{1H} NMR, IR, and UV spectra, and
crystallographic data for (1) in crystallographic information file (CIF) format. CCDC 1898244 also contains
the supplementary crystallographic data for this paper. These data can be obtained free of charge via http:
//www.ccdc.cam.ac.uk/conts/retrieving.html.
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